

Надстройка Пакет анализа

В состав Microsoft Excel входит надстройка Пакет анализа, которая содержит 19 статистических процедур и около 50 функций. Функции в основном относятся к категориям инженерных и финансовых и поэтому здесь не рассматриваются. Статистические процедуры, содержащиеся в надстройке Пакет анализа, предоставляют широкий спектр средств для статистического анализа начиная от простой описательной статистики или сглаживания данных и заканчивая анализом Фурье и проведением различных тестов. Полный список этих средств и их краткое описание представлены в табл. 5.1 (названия средств приводятся в соответствии со списком из диалогового окна Анализ данных).

Средство	Описание
Однофакторный дисперсион- ный анализ	Используется для проверки гипотезы о равенстве математических ожиданий двух или более выборок
Двухфакторный дисперсион- ный анализ без повторений	Двухфакторный дисперсионный анализ на основе одной выборки
Двухфакторный дисперсион- ный анализ с повторениями	Двухфакторный дисперсионный анализ на основе нескольких выборок
Корреляция	Вычисляет корреляционную матрицу
Ковариация	Вычисляет матрицу ковариаций
Описательная статистика	Создает отчет, содержащий статистические харак- теристики представленной выборки
Экспоненциальное сглажи- вание	Реализует метод экспоненциального сглаживания данных
Двухвыборочный F-тест для дисперсий	Применяется для сравнения дисперсий двух гене- ральных совокупностей
Анализ Фурье	Реализует метод быстрого преобразования Фурье (БПФ) для анализа данных
Гистограмма	Используется для анализа распределения выбороч- ных данных и построения гистограмм
Скользящее среднее	Используется для сглаживания данных
Генерация случайных чисел	Генерирует случайные числа, имеющие заданное распределение
Ранг и персентиль	Используется для вычисления рангов и квантилей

Таблица 5.1. Статистические средства надстройки Пакет анализа

Окончание табл. 5.1

Средство	Описание
Регрессия	Используется для построения линейной регрессии
Выборка	Создает случайную выборку, рассматривая входной диапазон значений как генеральную совокупность
Парный двухвыборочный t- тест для средних	Используется для проверки гипотезы о равенстве математических ожиданий для двумерной выборки данных
Двухвыборочный t-тест с одинаковыми дисперсиями	Служит для проверки гипотезы о равенстве мате- матических ожиданий для двух выборок. Предпо- лагается равенство дисперсий генеральных сово- купностей
Двухвыборочный t-тест с разными дисперсиями	Используется для проверки гипотезы о равенстве математических ожиданий для двух выборок. Не требует предположения о равенстве дисперсий ге- неральных совокупностей
Двухвыборочный z-тест для средних	Используется для проверки гипотезы о различии между математическими ожиданиям двух гене- ральных совокупностей

Отметим, что эти средства имеют определенные ограничения и иногда удобнее воспользоваться статистическими функциями или другими средствами Excel. Преимуществом функций перед данными средствами является то, что функции автоматически пересчитываются при любых изменениях, сделанных в выборке, тогда как эти средства необходимо выполнять заново, если выборка изменилась. В "оправдание" этих средств скажем, что они сохраняют установки, сделанные пользователем при последнем применении средства, но только в течение одного сеанса работы с Excel.

Средства, которые включены в надстройку Пакет анализа, доступны через команду Сервис⇒Анализ данных. (Если команды Анализ данных нет в меню Сервис, подключите эту надстройку. Для этого выполните команду Сервис⇒Надстройки и в открывшемся диалоговом окне Надстройки в списке Доступные надстройки установите флажок напротив опции Пакет анализа.) Команда Сервис⇒Анализ данных открывает одноименное диалоговое окно, в списке Инструменты анализа которого следует выбрать необходимое средство (рис. 5.1). После выбора какого-либо средства (и последующего щелчка на кнопке ОК) открывается диалоговое окно этого средства.

В большинстве таких диалоговых окон (на рис. 5.2 для примера показано диалоговое окно средства Описательная статистика) выделены области Входные данные и Параметры вывода. В области Входные данные указывается диапазон ячеек, в котором содержатся данные (поле Входной интервал), указывается, сгруппированы ли данные, и если сгруппированы, то по столбцам или по строкам (переключатели по столбцам и по строкам). Если задается входной диапазон данных вместе с заголовками, то устанавливается флажок опции Метки в первой строке (столбце). (Если заголовки не задаются, то данным автоматически присваиваются заголовки Столбец1, Столбец2 и т.д. или Строка1, Строка2 и т.д. в зависимости от того, расположены данные в столбцах или в строках.) В некоторых диалоговых окнах в области Входные данные необходимо указать несколько входных диапазонов (например, в окне Регрессия) либо дополнительные параметры для проведения выбранной статистической процедуры, например доверительный уровень для проведения тестов.

нализ данных		11
Инструменты анализа		
Однофакторный дистерсконный акалис Дирифакторный дистерсконный акалис повторениями Доруфакторный дистерсконный акалис без повторений Корралиции Коезриации	*	Отнена
аточновало инпольст Экотона-циальное отлахивание Даука-борочный F-тест для дисперсии Аналия Фурме Пистограния	_	

Рис. 5.1. Диалоговое окно Анализ данных со списком инструментов статистического анализа

Вурдной інпервалі	\$4\$1.58\$15	2 OK	B
Групперсвание:	™ по стоябция С по строкан	0114	HØ DA
Р Метни в первой строке			
Тараметры вывода			
Ф Вызданой сеттериал:	\$1\$7	2	
F Hassing patients and	-		
Пновая рабочая унита			
P Brorosan cratectura			
Урскинь надехности:	05 %		
C K-sil gamerauni:	1		
Viel Hartonical:	1		

Рис. 5.2. Диалоговое окно средства Описательная статистика

В области Параметры вывода, как правило, надо указать, куда будут выводиться результаты расчетов. Предусмотрено три возможности: на текущий рабочий лист (переключатель Выходной интервал), при этом необходимо указать выходной интервал (достаточно указать адрес одной ячейки, которая определяет верхний левый угол выходного диапазона); на новый рабочий лист текущей рабочей книги начиная с ячейки A1 (переключатель Новый рабочий лист), при этом можно сразу задать имя этому листу; в новую рабочую книгу (переключатель Новая рабочая книга), в этом случае автоматически открывается новая рабочая книга. Также в этой области часто имеются опции, которые указывают, что

именно необходимо вывести из возможного набора выходных результатов (например, графики либо дополнительные статистические характеристики).

В некоторых диалоговых окнах имеются другие области, в которых содержатся опции, необходимые для работы данного средства. Эти опции будут приведены при описании конкретных средств. Опции областей Входные данные и Параметры вывода будем упоминать только тогда, когда они будут отличаться от описанных выше.

Перейдем к описанию конкретных средств статистического анализа, при этом будем называть их так, как они названы в списке диалогового окна Анализ данных. Опишем их в порядке "от простого к сложному" (другими словами, в том порядке, который больше нравится автору).

5.1. Описательная статистика

Это средство (вместе со средством Гистограмма, которое будет описано в следующем разделе) является, по-видимому, наиболее часто используемым из всего пакета анализа, поскольку быстро и просто вычисляет основные статистические характеристики одномерных выборок. На рис. 5.3 показан рабочий лист, содержащий три ряда данных (три независимые выборки, имеющие разные распределения) и диалоговое окно Описательная статистика.

	A102		6	Описательная статистика 🛛 🕅
1-	A	B	C	Rational American
1	Выборка1	Выборка2	Выборка3	Biographivempean: SA\$1:\$C\$101
2	-0.30023	0,744163	48	Отнена
3	-1,27768	0,368603	44	Груттирование: К по столодан
4	0,244257	0,442335	52	С по сдожанСправка
5	1,276474	0,273965	49	A Geuce e uniberrey cubores
6	1,19835	0,438581	46	And the second se
7	1,733133	0.012757	45	Паранитры вывода
8	-2,18359	0,446883	50	С выходной нитереал:
9	-0,23418	0,091891	57	P Hosein patowin metri On_crativitivia
10	1,095023	0,562212	53	C Hoppe (1) Fourier and 1
11	-1,0867	0.692526	-58	- Charles pace an great
12	-0,6902	0.906095	50	🖻 Илоговая сталистика
13	-1,69043	0,267861	46	Р довоњ надехности: 25 %
14	-1,84691	0,227241	49	F K-sil garmentet: 3
15	-0.97763	0.558184	44	P K sai sasfersunit
16	-0.77351	0.40849	45	
17	-2,11793	0,417493	45	
10	P H Butops	These / These	a/ =0	

Рис. 5.3. Три выборки и диалоговое окно Описательная статистика

Отметим, что в данном случае имеются выборки разных размеров. Средство Описательная статистика правильно определяет размеры выборок, игнорируя пустые ячейки. На рис. 5.4 показан рабочий лист с результатами расчетов.

В табл. 5.2 перечислены вычисляемые средством Описательная статистика статистические характеристики выборок, а также функции, которые возвращают те же самые характеристики.

5	A	Ð	C	D	E	F	-
1	Budoprat		Выборла?		Выборка3		
2	C. Contraction	-1201020		-transmit	1000 1000 1000	- 1. V (1. V - 1.	
3	Среднее	-0,04048	Среднее	0,493936	Среднее	48,8571	
4	Стандартная ошибка	0,10858	Стандартная ошибка	0.035805	Стандартная ошибка	0,81922	
5	Медиана	-0,0849	Медиана	0.444609	Медиана	49	
6	Мода	#H0Д	Мода	#Н/Д	Moga	50	
7	Стандартное отклонение	1,08563	Стандартное отклонение	0,253178	Стандартное отклонен	3,66335	
8	Дисперсия выборки	1,17859	Дисперсия выборки	0,064099	Дисперсия выборни	13,4202	
9	Энсцесс	-0,47571	Эксцесс	-0,53969	Эксцесс	0.61597	
10	Асимметричность	0,0907	Асимметричность	0.278514	Асимметричность	0,75294	
11	Интервал	4,95324	Интереал	0.961028	Интервал	15	
12	Merennym	-7,57758	Manazaryta	0,012757	Miearstyst	43	
13	Максимуи	2,37585	Максимум	0,873785	Мансимум	58	
14	Сумма	-4,04849	Cymyra	24,19681	Cymwa	1710	
15	Cver	100	CNET	50	Cviet	35	
16	Наибольший(3)	2,1945	Наибольший(3)	0.946318	Наибольший(3)	57	
17	Наименьший(2)	-2,18359	Наименьший(2)	0.056185	Наименьший(2)	44	
18	Уровень наденности(95,0%)	0,21541	Уравены надежности(96,0	0.071952	Уровень надежности:	1,25841	
19		10000				0.000	
20	1.2.4						Ξ.
	# # On_cranecreme / Bullopus /	Deciz Z Dec	0/	11		10.00	11

Рис. 5.4. Результаты работы средства Описательная статистика

Значение	Описание
Среднее	Выборочное среднее $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$. Функция СРЗНАЧ
Стандартная	Оценка среднеквадратического отклонения выборочного среднего;
ошибка	вычисляется по формуле $\sqrt{\frac{1}{n(n-1)}\sum_{i=1}^{n}(x_i-\overline{x})^2}$
Медиана	Значение медианы, т.е. квантиля порядка 0,5. Функция МЕДИАНА
Мода	Значение моды. Вычисляется так же, как и функцией МОДА (см. раздел 4.11.3), — если нет одинаковых выборочных значений, то возвращается значение ошибки #Н/Д
Стандартное	Оценка среднеквадратического отклонения генеральной совокупно-
отклонение	сти $s_n = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2}$. Функция СТАНДОТКЛОН
Дисперсия выборки	Оценка дисперсии генеральной совокупности $s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$.
	Функция ДИСП
Эксцесс	Выборочный коэффициент эксцесса (см. раздел 2.3.4). Функция ЭКСЦЕСС
Асимметрич- ность	Выборочный коэффициент асимметрии (см. раздел 2.3.4). Функция СКОС

Таблица 5.2	. Значения, в	ичисляемые средством Описательная статистика
Значение	Описание	

Значение	Описание
Интервал	Размах выборки. Вычисляется как разность между максимальным и минимальным выборочными значениями
Минимум	Минимальное выборочное значение. Функция МИН
Максимум	Максимальное выборочное значение. Функция МАКС
Сумма	Сумма выборочных значений. Функция СУММ
Счет	Объем выборки. Функция СЧЁТ
Наибольший (К)	К-е наибольшее значение. Если К = 1, то выводится максимальное выборочное значение. Функция НАИБОЛЬШИЙ
Наименьший (К)	К-е наименьшее значение. Если К = 1, то выводится минимальное выборочное значение. Функция НАИМЕНЬШИЙ
Уровень на- дежности (Х%)	Граница доверительного интервала для неизвестного математического ожидания с доверительным уровнем Х%; доверительный интервал стро- ится как выборочное среднее плюс-минус данное значение. Граница вы- числяется с помощью распределения Стьюдента (см. раздел 2.3.6), т.е. здесь неявно используется предположение о нормальности распреде- ления генеральной совокупности. Поэтому к данному показателю следует относиться осторожно, особенно при малых выборках

5.1.1. Опции диалогового окна Описательная статистика

Установка флажка опции Итоговая статистика указывает, что в итоговом отчете этого средства будут вычислены все статистические характеристики выборки, за исключением границы доверительного интервала для среднего и К-х наибольших и наименьших значений, для которых имеются отдельные опции Уровень надежности, К-ый наименьший и К-ый наибольший. Если флажок опции Итоговая статистика не установлен, то выводится только то, что задается с помощью опций Уровень надежности, К-ый наименьший и К-ый наибольший.

Опция Уровень надежности указывает, надо ли вычислять границу доверительного интервала для среднего. В поле ввода рядом с этой опцией задается доверительный уровень в процентах.

В полях ввода рядом с опциями К-ый наибольший и К-ый наименьший указываются порядки выводимых наибольшего и наименьшего значений. Если эти порядки равны 1, то выводятся соответственно максимальное и минимальное выборочные значения.

5.2. Гистограмма

Это средство полезно для первичного анализа распределения выборки и построения гистограмм (столбцовых диаграмм эмпирических плотностей вероятностей). В качестве исходных данных нужно указать входной диапазон, содержащий выборочные значения, и интервал карманов. Интервал карманов определяет границы для столбцов гистограммы. Средство Гистограмма подсчитывает число выборочных значений, попавших в каждый карман (эти числа в выходных данных

называются Частота), и по этим числам строит гистограмму. Далее последовательно суммируются частоты (подсчитываются так называемые накапливающие суммы), эти суммы делятся на объем выборки и умножаются на 100. Получается то, что здесь называется Интегральный процент. На самом деле, если убрать проценты (т.е. накапливающие суммы нормировать не на 100%, а на 1), это просто эмпирическая функция распределения. Средство Гистограмма предоставляет возможность вывести значения интегрального процента в виде графика. В качестве дополнительной возможности предусмотрена сортировка частот по убыванию и построение гистограммы по этим отсортированным частотам.

5.2.1. Опции диалогового окна Гистограмма

Диалоговое окно Гистограмма показано на рис. 5.5. В области Входные данные задаются адрес диапазона ячеек с выборочными значениями (поле ввода Входной интервал) и адрес диапазона, содержащего границы карманов (поле ввода Интервал карманов). Границы карманов должны быть представлены в порядке возрастания. При подсчете количества попаданий выборочных значений в карманы в число попавших в данный карман включаются значения, равные нижней границе кармана и меньшие верхней границы кармана. Если не указывать интервал границ карманов, будут автоматически созданы равновеликие интервалы, количество которых определяется по формуле Стерджесса $k = [1 + 3,22 \ln(n)]$ ([x] — целая часть числа x). (Более подробно о построении интервалов речь идет в разделе 8.3.2.)

15.	A	B	C	D	E	Ŧ	G	н	1
1	Выборка	1.000	i and a state of the	1.00	04032	3 - 24		States.	1.00
2	-0,30023		Гистогра	мма				17 X	
3	-1,27768		Harayawa at						
4	0,244257		Buttlemin re	inequent:	\$4\$1.3	A\$101	3	0.24	
5	1,276474		Marterman 1	urnin-rel	-	1017r.	N ON	00	
6	1,19835		- Hinderson	all a set	1114		-		
7	1,733133		P Merson				0.00	104	
8	-2,18359		-	20201233222				3	
9	-0,23418		-н арамопре	Devilo (19	(max)		51		
10	1,095023		P BEROAM	by neuropartiti	1691		1		
11	-1,0867		C Hoeseling	Deforant greet					
12	-0,6902		CHosang	абриал (ректа	110			3	
13	-1,69043			Internet	States and the state of the	9229		3	
14	-1,84691		E income	Conceptinguese	and the second s				
15	-0,97763		Planet	notion (popp	101				
16	-0,77351		The party of	Section of the					
17	-2,11793		-				1		

Рис. 5.5. Исходные данные и диалоговое окно Гистограмма

Рассмотрим опции Парето (отсортированная гистограмма), Интегральный процент и Вывод графика из области Параметры вывода.

Если установлен только флажок опции Парето (отсортированная гистограмма), то выводятся таблица частот и таблица отсортированных в порядке убывания частот. Если также установлен флажок опции Вывод графика, выводится гистограмма отсортированных частот, как показано на рис. 5.6.

	82	•	\$ +2	57758074	440082					
-	A	В	С	D	E	F	G	н	1	J
1	Выборка	Карман	Hacmoma-	Карман	4acmome	2				
2	-0,3002322	-2,57750	1	0,889684	19					
3	-1,2776832	-2,08228	2	-0.10098	17		Ciri	стограмма	III Ha	CTOTA
4	0,2442573	-1,58693	5	-0.59629	16	20				
5	1,2764735	-1,09161	8	0,394361	14	20 1				
6	1,1983502	-0,59629	16	-1.09161	8	E 15 +				
7	1,7331331	-0,10096	17	1,395008	8	5 10 -		100000000000		
8	-2,1835878	0,394361	14	Euje	6	9 5-			II -	22
9	-0.2341812	0,889684	19	-1,58693	5	0.4		البر البرالير ال	بالبالي	0,0,
10	1,0950225	1,385008	8	1,880331	4		883		98	≊ उर
11	-1,0867006	1,880331	4	-2,08226	2	1 2	000 50	8 5 8 4	SE	5 6
12	-0,6902042	Еще	8	-2,57758	1	1 23	883!	발 문 중	3 B	S B
13	-1,6904323	_				0 8	8 2 8	用用用	民民	8. 61
14	-1,8469109					1	P 4 4	Kantuau	7 7	2012
15	-0,9776295							(Self-inter-	5	
16	-0,7735071									
17	-2,1179312									

Рис. 5.6. Отсортированная гистограмма

Если установлен только флажок опции Интегральный процент, то выводится таблица, содержащая частоты и значения интегрального процента. Если еще установлен флажок опции Вывод графика, эти данные также отображаются графически, как показано на рис. 5.7.

1	B2			-2,577580744400	62							
1	A	B	С	D	E	F		6		H.	1	
1.1	Выборка	Карман	Hacmoma	Интегральный %		-						11
2	-0,30023	-2,5776	1	1,00%							Harmita	-1
3	-1,27768	-2,0823	2	3,00%				INCTOR	OWW3	_	IN LIGHT	. 8
4	0,244257	-1,5869		8,00%						-8	Nuter partnershi	8 <u> </u>
5	1,276474	-1,0918	. 0	16,00%	20							1.1
6	1,19835	-0,5963	16	32,00%	18 -			10000	8	1	- 90,00%	č.
7	1,733133	-0,101	17	49,00%	10 1			п П.	wЛ		1 80,00%	
8	-2,18358	0,39435	14	63,00%	E 12 -				8 11		+ 60,00%	
9	-0,23418	0,89968	19	82,00%	E 10 +			11.14			+ 60,00%	
10	1,095023	1,39501	0	90,00%	9 81		11			182	40,00%	
11	-1,0987	1,88033	4	94,00%	4.+	1	1				+ 20,00%	
12	-0.8902	Eue	6	100,00%	2 1	B-8					+ 10,00%	
13	-1,69043	110			0 +	5.0	~~~	4 5		10 01		
14	-1,84691				27.4	12 28	8	8.8	落日	81	all a	
15	-0.97763				89	8 8	5	88	8 8	88		
16	-0,77351				Ga	8 8	8	8 B	R B	菌菌		
17	-2,11793				2	9. 7	4	P P	0 0			
18	-0.56792							Карма	H			
19	-0,40405							1				-

Рис. 5.7. Гистограмма частот и график интегрального процента

Если установлены флажки опций Парето (отсортированная гистограмма) и Интегральный процент, то выводятся две таблицы: одна содержит неотсортированные частоты и интегральные проценты, вторая — отсортированные частоты и соответствующие интегральные проценты (рис. 5.8). Если также установлен флажок опции Вывод графика, выводятся гистограмма и график интегрального процента, построенные по отсортированным частотам.

5.	A	Ð	C	D	E	F	G
1	Выборка	Карман	Vacmoma	Интегральный %	Карман	Частота	Интегральный %
2	-0,30023	-2,577581	1	1,00%	0,88968	19	19,00%
3	-1,27768	-2,082257	2	3,00%	-0.101	17	36,00%
4	0,244257	-1,586934	5	8,00%	-0,5963	16	52,00%
5	1,276474	-1,09161	8	16,00%	0,39436	14	66,00%
8	1,19835	-0,596287	16	32,00%	-1,0916	8	74,00%
7	1,733133	-0,100963	17	49,00%	1,38501	8	82,00%
8	-2,18359	0,3943605	14	63,00%	Еще	6	88,00%
9	-0,23418	0,8896841	19	82,00%	-1,5869	5	93,00%
10	1,095023	1,3850076	8	90,00%	1,88033	4	97,00%
11	-1.0867	1,8803312	4	94,00%	-2,0823	2	99,00%
12	-0,6902	Еще	6	100,00%	-2,5776	1	100,00%
13	-1,69043						
14	-1,84691						

Рис. 5.8. Выходные данные (две таблицы)

Наконец, если установлен флажок только опции Вывод графика, выводятся таблица частот (не отсортированная) и гистограмма.

5.3. Генерация случайных чисел

Это средство предназначено для генерирования значений случайных чисел, имеющих заданное распределение, т.е. для получения случайных выборок. Средство имеет возможность генерировать случайные числа, имеющие следующие распределения.

- Равномерное. Генерируется последовательность равномерно распределенных случайных чисел в заданном интервале, для чего необходимо указать верхнюю и нижнюю границы интервала.
- Нормальное. Генерируется последовательность случайных чисел, подчиняющихся нормальному распределению. Задается математическое ожидание и среднеквадратическое отклонение.
- Бернулли. Генерируется последовательность случайных чисел, принимающих только значение 0 или 1, в зависимости от заданной вероятности успеха (исхода "1"). (О распределении Бернулли речь идет в разделе 1.4.2.)
- Биномиальное. Генерируется последовательность случайных чисел, равная количеству исходов "1" в *n* независимых испытаниях. В результате каждого из них с вероятностью *p* может произойти исход "1" и с вероятностью (1 - p) — исход "0" (см. раздел 1.4.3). Здесь необходимо задать число испытаний *n* и вероятность *p*.
- Пуассона. Генерируется последовательность случайных чисел, подчиняющихся распределению Пуассона с заданным параметром λ. (О распределении Пуассона речь идет в разделе 1.4.4.)
- Модельное. При выборе этого распределения на самом деле генерируются не случайные числа, а повторяющаяся последовательность членов арифметической прогрессии, причем члены прогрессии также могут повторяться заданное число раз. Для этого распределения задаются интервал изменения
- 154 Часть II. Средства Excel для статистического анализа

членов арифметической прогрессии, шаг прогрессии, число повторений членов прогрессии и число повторений этой последовательности чисел.

• Дискретное. Генерируется последовательность случайных чисел, подчиняющихся заданному дискретному распределению. Для задания этого распределения необходимо указать диапазон ячеек, состоящий из двух столбцов: в первом столбце содержатся значения, а во втором — вероятности каждого значения. Сумма вероятностей во втором столбце должна быть равна 1.

5.3.1. Опции диалогового окна Генерация случайных чисел

Диалоговое окно Генерация случайных чисел при задании различных распределений имеет ряд одинаковых элементов, но наличие некоторых других опций зависит от выбранного типа распределения. Выбор распределения осуществляется в раскрывающемся списке Распределение.

Рассмотрим сначала общие элементы всех диалоговых окон Генерация случайных чисел.

В поле ввода Число переменных указывается количество генерируемых выборок. Каждая выборка располагается в отдельном столбце. Максимальное количество выборок — 256 (по количеству столбцов в рабочем листе Excel). Если это число не введено, то будет сгенерирована одна случайная выборка, или, если в поле Выходной интервал указан диапазон ячеек, в котором будут располагаться сгенерированные значения, будут заполнены все столбцы этого диапазона.

В поле ввода Число случайных чисел задается количество выборочных значений (т.е. объем генерируемых выборок), одно и то же для всех выборок. Если это число не введено, то будет сгенерировано одно значение, или, если в поле Выходной интервал указан диапазон ячеек, в котором будут располагаться сгенерированные значения, будут заполнены все строки этого диапазона.

В большинстве диалоговых окон Генерация случайных чисел (кроме окон для модельного и дискретного распределений) имеется поле ввода Случайное рассеивание. Число, введенное в это поле, задает начальное значение, которое будет использовано в алгоритме генерации случайных чисел. Обычно это поле оставляют пустым. Однако, чтобы генерировать одинаковые последовательности случайных чисел, необходимо ввести число из диапазона от 1 до 32 767 (допускаются только целые числа). Тогда в будущем можно получить тот же набор выборочных значений, если в это поле снова ввести то же самое начальное значение.

Все диалоговые окна Генерация случайных чисел имеют область Параметры; опции этой области зависят от типа выбранного распределения. Назначение большинства этих опций очевидно, но некоторые требуют пояснений.

Равномерное распределение. Диалоговое окно Генерация случайных чисел для этого распределения показано на рис. 5.9.

Здесь в области Параметры надо задать только верхнюю и нижнюю границы, в пределах которых сосредоточено распределение.

Нормальное распределение. Диалоговое окно Генерация случайных чисел для этого распределения показано на рис. 5.10.

В области Параметры задаются значения среднего (математического ожидания) и стандартное (среднеквадратическое отклонение). Для стандартного нормального распределения среднее равно 0, а стандартное отклонение — 1.

числа (дереген-ныт :	2	OK
экспо случайных чисял	100	014948
Застредопание:	Евномрнов •	0703043
Таранотры	Sector Se	
televaly -10 it	10	
Межау - <u>10</u> и	10	
Мажду 10 в Пучајњов рассенењени : Тераногры вывода	10	
Между -10 и Случдінов рассоналня: Тараногры вывода • Вдасдной нитервог:	10 F4C1	
Между 10 в Спучаїнно рассонання: Таранагры вывода • Вуходной интервол: • Новый рабочий дист:	10 Fact N	19

Рис. 5.9. Диалоговое окно для генерирования равномерно распределенных случайных чисел

енерашня случайных ч	мсел	11
чило дерегенных :	1	OK
Экспо случайных чисклі	10	Отнана
Васпредопенно:	Нарнальное	0700000
Парамотры		-
Среднюе =	-1	
Стандартное дтилонение =	P	
Спучајњов рассенвањи:	1294	
Параногры вывода		
Выходной интервал:	RICI N	
 Вузісаной интервалі: Новый рабочий дисті 	RICI N	

Рис. 5.10. Диалоговое окно для генерирования нормально распределенных случайных чисел

Распределение Бернулли. Диалоговое окно Генерация случайных чисел для данного случая показано на рис. 5.11.

Здесь в области Параметры задается только один параметр — вероятность *р*. Биномиальное распределение. Диалоговое окно Генерация случайных чисел для этого распределения показано на рис. 5.12.

Для этого распределения задаются значения вероятности *p* и количество испытаний *n*.

чыла дерегенных :	2	1	OK
Экспа случайных чисклі	30	-	014949
Васпредопонне:	Барьфлин	•	<u>О</u> правна
Паранетры			
Эканонка р н	0.4		
(การสมคร รวกระชวงคร	1224		
Спучајњов рассенкањи: Пасанотош вывода	1234		
Спучаїною рассонялания: Параногры вывода 14 Веродной непервоп:	[1234 FIC1	-	
Спучајњов рассенвање: Параногры вывода 1 ⁶ Вузодной интервол: 1 ⁶ Новий рабочий анст	1234 F1C1	Л	

Рис. 5.11. Диалоговое окно для генерирования случайных чисел, имеющих распределение Бернулли

чила (ререненных с	2	OK
экспо случайных чисял	30	0149-0
Васпредопонно:	Enconsuma-ce	0700000
Таранотры		
Экинонор =	0.6	
Чисто устытаний =	20	
	[1234	
Tantania in pactoria and	and a second	
• Выходной интереал:	PICI N	
Новый рабочий дист		

Рис. 5.12. Диалоговое окно для генерирования случайных чисел, имеющих биномиальное распределение

Распределение Пуассона. Диалоговое окно Генерация случайных чисел для данного случая показано на рис. 5.13.

Здесь в области Параметры задается только один параметр Лямбда.

Модельное распределение. Диалоговое окно Генерация случайных чисел для этого случая показано на рис. 5.14.

чила (зерененны с	2		OK
yacno ony-salesus recom	30	-	014949
Васпредопенно	Пуаксона	•	<u>О</u> правна
Паранотры			
Пенбда =	lo,a		
	lum.		
Спучујњов рассоняањи:	1234	-	
Спучајњов рассонаания: Параногры выхода 17 Выходной негервоп:	1234 RICL		
Спучајњов рассенкањи: Парамогры выхода Ф. Вуродной интервот: Ф. Новий рабочий анст:	1294 Rici	N	

Рис. 5.13. Диалоговое окно для генерирования случайных чисел, имеющих распределение Пуассона

енерашня случайных ч	neen		1
Ancua Debeuen e Praza	2		OK
Экла случайных інкалі	-		Отнана
Васпредопонно:	Моделья	oi -	Олбарна
Papawonpul OI O AU I	C SERVICE	0,3	
повтории каждое чисто	2	pau	
подтории последовательнос	n þ	pas	
Случајнов рассенвание:	1		
Паранатры вывода	-	1007	
Веродной интереал:	\$4\$1	7	
Пновый рабочий дист	1		

Рис. 5.14. Диалоговое окно для генерирования заданных чисел (модельное распределение)

Здесь задаются нижняя и верхняя границы чисел, шаг прогрессии, число повторений значений в последовательности и число повторений последовательности. На рис. 5.15 показаны сгенерированные числа с модельным распределением, параметры которого заданы на рис. 5.14.

16	A	B	С
1	0	0	2 22
2	0	0	
3	0,3	0,3	5
4	0,3	0,3	
5	0,6	0,6	
6	0,6	0,6	2
7	0,9	0,9	
8	0,9	0,9	
9	1	1	
10	1	1	
11	0	0	
12	0	0	
13	0,3	0,3	
14	0,3	0,3	
15	0,6	0,6	
16	0.6	0,6	
17	0,9	0,9	1
18	0,9	0,9	
19	1	1	2
20	1	1	
21	0	0	5
22	0	0	

Рис. 5.15. Сгенерированные числа

Дискретное распределение. Диалоговое окно Генерация случайных чисел для этого типа распределения вместе с необходимыми входными данными показано на рис. 5.16.

A	8	Гонерация случайных ч	HCH.II	7 ×
Значения	Вероятности		and the second s	
1	0,2	Herm Dependent	2	DK.
2	0,3	ปละเสด เสราะสิ่งสมเขาแห่งสภา	15	OTHER
3	0,1		1000	Contraction of the local division of the loc
4	0,1	Bachpegenerere:	Диорепное •	Q7Deexa
5	0,3	Параметры		
		Bactural understand two street	(La men an arcana)	
		Exito tota	S.	
		lever sure		
		Crivial-on pacce-barrent		
			Se 10.	
		- abavempur evenaux	(Free)	
		1 Beaugeral ve-repears:	1001 7	
		Новый рабочий дист:	throth Throuber	
		C Hosan pationan gerra		
	А Значения 1 2 3 4 5	А Вероятности 1 0,2 2 0,3 3 0,1 4 0,1 5 0,3	А D Генеровные служейных и 3начения Вероятности Честа дарачания 1 0,2 Честа дарачания 2 0,3 Цеста случайных чисал. 3 0,1 Ветределение: 5 0,3 Перачетры 8додной нитерал эначени Битределение: 5 0,3 Перачетры 6 Стучайное рассочевание: Перачетры сыезда Веродной интервал: 1 Веродной интервал: 1 Наза рабочия дист:	А D Гинирализи случайных чиссии Значения Вероятности Часто разничных 2 1 0,2 Часто разничных 2 2 0,3 Часто разничных 15 3 0,1 Вастределение Дасоратное • 5 0,3 Перачетры Вастределение • 5 0,3 Перачетры Вастределение • Спучайное рассонование • • • • Спучайное рассонование • • • • • • • • • • • • • • <td< td=""></td<>

Рис. 5.16. Диалоговое окно для генерирования случайных чисел, имеющих заданное дискретное распределение

	A	B	C
1	4	1	
2	3	2	
3	5	2	
4	5	2	
5	5	1	
6	2	2	
7	4	2	
8	2	5	
9	2	5	
10	5	5	
11	5	1	
12	1	1	
13	4	5	
14	1	4	
15	2	2	
16			
17			

Для задания дискретного распределения в поле Входной интервал значений и вероятностей необходимо указать адрес диапазона ячеек, содержащий значения случайной величины и соответствующие им вероятности. Диапазон должен состоять из двух столбцов: левого, содержащего значения, и правого, содержащего вероятности, как показано на рис. 5.16. Сумма вероятностей должна быть равна 1. На рис. 5.17 представлены сгенерированные числа с распределением, параметры которого заданы на рис. 5.16.

В заключение отметим, что в Excel имеются и другие средства генерирования случайных выборок, например функции СЛЧИС и СЛУЧМЕЖДУ (см. раздел 4.13). Подробно задача генерирования значений случайных величин рассмотрена в главе 7.

Рис. 5.17. Сгенерированные числа

5.4. Выборка

Это средство из исходного числового множества выбирает указанное количество чисел, причем либо случайным образом, либо с заданным периодом (например, каждое второе или каждое десятое число). Такую операцию выбора числовых значений из заданного множества можно трактовать как создание выборки заданного объема, если исходное множество рассматривать как генеральную совокупность. Подобная операция часто составляет один из этапов предварительной обработки данных. Например, если исходная выборка слишком велика для обработки или построения диаграмм либо если исходные данные содержат периодическую составляющую, то можно создать выборку, содержащую значения только из отдельных частей периода.

5.4.1. Опции диалогового окна Выборка

Диалоговое окно Выборка показано на рис. 5.18. Адрес диапазона ячеек, содержащий исходный набор числовых значений, задается в поле Входной интервал. Если этот диапазон состоит из нескольких столбцов, то значения сначала будут извлекаться из первого столбца, затем из второго столбца и т.д. Средство Выборка откажется работать (выведет соответствующее окно предупреждения), если среди исходных данных имеются нечисловые значения.

В области Метод выборки необходимо указать, каким способом будут выбираться значения из исходного множества. Если установлен переключатель Периодический, то из исходного множества будет выбрано каждое *n*-е значение; число *n* задается в поле ввода Период. Количество выбранных значений будет равно количеству значений в исходном диапазоне, деленному на значение в поле Период. Если установлен переключатель Случайный, значения из исходного множества выбираются случайным образом; количество выбираемых значений задается в поле Число выборок.

висалык даннык Вусаной інпервалі	\$4\$1 \$8\$17	Ы	OK
Г. Менен			CIMIN
Метод выборни			(marka)
C Debective woode)			
Пернод:		ST	
# Crynglineal			
чисто выборон:	20		
Параметры выводя	12	23	
/F Высканование	\$0\$1	7	
П Нањай рабочай дист:	1	1	
П Новал рабочал енгла			

Рис. 5.18. Диалоговое окно Выборка

5.5. Ранг и персентиль

Это средство позволяет создать таблицу, содержащую порядковый и процентный ранги для каждого значения в заданном наборе данных, при этом значения упорядочиваются в *порядке убывания*. На рис. 5.19 показаны диалоговое окно Ранг и персентиль и исходные данные, на рис. 5.20 — результат применения этого средства. Итоговая таблица содержит порядковый номер выборочного значения, столбец выборочных значений, отсортированных в порядке убывания, столбец рангов и столбец процентных рангов этих значений, причем наибольшему значению присваивается ранг 1 и процентный ранг 100%, а наименьшему — наибольший ранг и процентный ранг, равный 0%.

Если имеется группа совпадающих значений, то им присваиваются одинаковые ранги, равные рангу первого числа из группы совпадающих значений. Значению, следующему за этой группой, присваивается ранг, больший ранга совпадающих значений на число этих одинаковых значений. Процентный ранг T_i для

выборочного значения x_i рассчитывается по формуле $T_i = \frac{n-R_i}{n-1} \cdot 100\%$, где R_i —

ранг значения x_i , рассчитанный при условии упорядочивания данных по убыванию, n — объем выборки.

5.6. Двухвыборочный z-тест для средних

Это средство применяется для проверки гипотезы о равенстве (неравенстве) математических ожиданий двух независимых генеральных совокупностей, имеющих нормальное распределение, при известных дисперсиях этих распределений (см. раздел 2.4.2). Пусть имеются две независимые выборки $x_1, x_2, ..., x_n$ и $y_1, y_2, ..., y_m$ объемом соответственно n и m, извлеченные из совокупностей, имеющих нормальные распределения с известными дисперсиями σ_1^2 и σ_2^2 и неизвестными математическими ожиданиями соответственно μ_1 и μ_2 . Проверяется нулевая

14.	A	Ð	C	D	E	F	G	н	1	
1	Nº n/n	Выборка	[1.1.1			1.000		1.00	
2	1	-0.300232	_							
3	2	1.2764735								
4	3	-2,183588		-						
5	4	-1,086701		Pa	нг и персен	тиль				$1 \times$
6	5	-1,846911		10	орые даные				COV.	1
7	6	-2.117931			шана) снаяза	en:	\$8\$1:\$8\$21	3		
8	7	0,1348531		0	ENTERCORD-ING		C no cromus		Отнена	
9	8	-0,370241					C no crookaw		C.Creania	î l
10	9	-0,188158		6	7 Marsha II more	OR CITORE			D. dramon	4
11	10	0,865673		- 15	Eller Marine Lunipa					
12	11	1,6614558		11	powrtps) is an	одя				
13	12	0,9021915		6	Вукорнойни	TEPERAT:	\$D\$1	2		
14	13	-0,523795		1	Нації рабоч	ITTHE FAL				
15	14	0,7576114					1.0			
16	15	-1.521571			новая расся	angera				
17	16	0.028117		-						-
18	17	-1,742483								
19	18	1,44767								
20	19	0,7577137								
21	20	1,6614558								

Рис. 5.19. Исходные данные и диалоговое окно Ранг и персентиль

1	A.	B	C	D	E	F	G	H
1	N2 n/n	Выборка		Точка	Выборка	Ранг	Процент	
2	1	-0.300232		11	1,661456	1	100,00%	
3	2	1,2764735		18	1,44767	2	94,70%	
4	3	-2,183588		2	1,276474	3	89,40%	
5	4	-1,086701		12	0,902191	4	84,20%	
6	5	-1,846911		10	0,865673	5	78,90%	
7	6	-2,117931		19	0,757714	6	73,60%	
8	7	0,1348531		14	0,757611	7	68,40%	
9	8	-0.370241		20	0,25177	8	63,10%	
10	9	-0,186158		7	0,134853	9	57,80%	
11	10	0,865673		16	0,028117	10	52,60%	
12	11	1,6814558		9	-0,18616	11	47,30%	
13	12	0,9021915		1	-0,30023	12	42,10%	
14	13	-0.523795		8	-0.37024	.13	36,80%	
15	14	0,7576114		13	-0,5238	14	31,50%	
16	15	-1,521571		4	-1,0867	15	28,30%	
17	16	0,028117		15	-1,52157	16	21,00%	
18	17	-1,742483		17	-1,74248	17	15,70%	
19	18	1,44767		- 5	-1,84691	18	10,50%	
20	19	0,7577137		6	-2,11793	19	5,20%	
21	20	0,25177		3	-2,18359	20	,00%6	

Рис. 5.20. Результат вычислений

гипотеза H₀: $\mu_1 - \mu_2 = \delta$ (δ задано). Z-тест позволяет проверить гипотезу H₀ против разных конкурирующих гипотез: H₁: $\mu_1 \neq \mu_2 + \delta$ или H₁: $\mu_1 > \mu_2 + \delta$, либо H₁: $\mu_1 < \mu_2 + \delta$. Критериальная статистика вычисляется по формуле

$$z = \frac{\overline{x} - \overline{y} - \delta}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_1^2}{m}}},$$

где \overline{x} и \overline{y} — выборочные средние соответственно первой и второй выборок.

Для выборок из нормально распределенных генеральных совокупностей критериальная статистика z имеет стандартное нормальное распределение. Поэтому при заданном уровне значимости α критическая область строится на основе стандартного нормального распределения — вычисляется квантиль t порядка 1 – α для проверки гипотезы о равенстве либо квантиль t порядка 1 – $\alpha/2$ для проверки гипотезы. Нулевая гипотеза о равенстве принимается, если |z| < t (в противном случае отвергается); гипотеза H₀ при конкурирующей гипотезе H₁: $\mu_1 > \mu_2 + \delta$ принимается, если z < t; и при конкурирующей гипотезе H₁: $\mu_1 < \mu_2 + \delta$ нулевая гипотеза принимается при выполнении неравенства – t < z.

Рассмотрим пример. Имеется две выборки¹ объемом соответственно 50 и 20 значений, показанные на рис. 5.21. Обе имеют нормальное распределение, первая — стандартное (т.е. $\mu_1 = 0$ и $\sigma_1^2 = 1$), а для второй — $\mu_2 = 1$ и $\sigma_2^2 = 2$. Проверим с помощью средства Двухвыборочный z-тест для средних нулевую гипотезу, что $\mu_2 - \mu_1 = 1,5$ для разных случаев конкурирующих гипотез. Заполненное диалоговое окно для этого примера также показано на рис. 5.21.

1	A	8	C.	D	E	F	G	н	1
-1	Выборка1	Выборка2		Asymuliopo	чний х-тес	T 800 C	редних		17 IX
2	-0,300232	5,9675145		RECEIVE ASH				1	
3	-1,277683	1,1974558		Vi+reppoint rep	CHARMON 1:	\$2\$1:	\$8\$21	2	
4	0,2442573	-0,7640696		Meregeson neg	WHENHIOR Z1	SAST:	\$4551	51	C/THQHA
5	1,2764735	-0,581916						_	
6	1,1983502	-0,6243212		Dentermen	ая федния р	OHOUTHE	1,5		Thoma
7	1,7331331	1,1688795		The Designation of the Designation		General			ł
8	-2,183588	1,4044341		Algenerative re	Ceremon 1	персона	e)dr		
9	-0,234181	-2,3911238		Дисперсия пр	ранынкой 2 (сеестная	0.2		
10	1,0950225	0.0832612							
11	-1,086701	1,0600608		14 Minute					
12	-0,690204	-0,3645285		à/eda: 0,05					
13	-1,690432	1,0935916							
14	-1,840911	1,6365735		Парленотры на	JIICULA	-			
15	-0,977629	5,5526031		P BADIO AHOR	in-mappian:	\$U\$1		7	
16	-0,773507	-2,829191		C Hosteli pad	ANN DICTI	3			
17	-2,117931	0,9367265		C Hosan paß	CHAR HARTS				
18	-0,567925	4,8187318		1					
10	0.404049	4 723467							-

Рис. 5.21. Исходные данные и диалоговое окно Двухвыборочный z-тест для средних

Отметим, что средство требует, чтобы δ, значение которого задается в поле Гипотетическая средняя разность, было неотрицательно. Поэтому первым (в поле ввода Интервал переменной 1) задается адрес диапазона ячеек, содержащий выборку с большим математическим ожиданием, а затем в поле Интервал переменной 2

¹ Выборки получены с помощью средства Генерация случайных чисел.

указывается адрес второй выборки. В полях ввода Дисперсия переменной 1 и Дисперсия переменной 2 вводятся значения дисперсий соответственно первой и второй выборок. В поле Альфа вводится значение уровня значимости α . Результат вычислений средства Двухвыборочный z-тест для средних показан на рис. 5.22.

15-	A	8	C	D	E	F
1	Выборка1	Выборка2		Двухвыборочный 2-тест для средн	MX.	
2	-0,300232	5,9675145				
3	-1,277683	1,1974558		1	Выборка2	BuCoprat
4	0,2442573	-0,7640696		Среднее	0,992495873	-0,10700326
5	1,2764735	-0,581916		Известная дисперсия	2	1
6	1,1983502	-0,6243212		Наблюдения	20	50
7	1,7331331	1,1688795		Гипотетическая разность средних	1,5	
8	-2,183588	1,4044341		z	-1,15614643	
9	-0,234181	-2,3911238		Р(Z<=z) одностороннее	0,123810689	
10	1,0950225	0,0832612		z критическое одностороннее	1,644853476	
11	-1,086701	1,0600608		Р(Z<=z) двухстороннее	0,247621378	
12	-0,690204	-0,3645285		2 критическое двухстороннее	1,959982787	
13	-1,690432	1,0935916				
14	-1,846911	1,6365735				
15	-0,977629	5,5526031				
16	-0,773507	-2,829191				
17	-2,117931	0,9367265				
18	-0,567925	4,8187318				

Рис. 5.22. Результат вычислений

В итоговой таблице приводятся следующие данные.

- Среднее выборочные средние выборок.
- Известная дисперсия дисперсии выборок, которые указаны в диалоговом окне.
- Наблюдения объемы выборок.
- Гипотетическая разность средних значение δ, которое задано в диалоговом окне.
- Z значение критериальной статистики.
- P(Z<=z) одностороннее вероятность P(X≤z), где X случайная величина, распределенная по стандартному нормальному закону, z подсчитанное значение критериальной статистики.
- z критическое одностороннее значение квантиля порядка $1 \alpha/2$.
- Р(Z<=z) двухстороннее вероятность *P*(|X|≤|*z*|), где Х случайная величина, распределенная по стандартному нормальному закону, *z* подсчитанное значение критериальной статистики.
- z критическое двухстороннее значение квантиля порядка 1 α.

Как видно из результатов расчета, в данном примере нет оснований отвергать нулевую гипотезу при любых конкурирующих гипотезах.

Статистическая функция ZTECT (см. раздел 4.8.1) вычисляет вероятность P(Z<=z) двухстороннее.

5.7. Двухвыборочный t-тест с одинаковыми дисперсиями

Это средство реализует критерий проверки гипотезы о равенстве (неравенстве) математических ожиданий распределений двух независимых генеральных совокупностей, имеющих нормальные распределения с неизвестными дисперсиями в предположении, что дисперсии равны. Этот критерий, называемый *t*-тестом или тестом Стьюдента, подробно описан в разделе 2.4.2.

Рассмотрим выходные данные, вычисляемые этим средством, на примере проверки нулевой гипотезы $H_0: \mu_1 - \mu_2 = \delta$ (δ задано) против разных конкурирующих гипотез: $H_1: \mu_1 \neq \mu_2 + \delta$ или $H_1: \mu_1 > \mu_2 + \delta$, либо $H_1: \mu_1 < \mu_2 + \delta$ (μ_1 и μ_2 — неизвестные математические ожидания выборок). Исходные данные и заполненное диалоговое окно Двухвыборочный t-тест с одинаковыми дисперсиями показаны на рис. 5.23. Выборки извлечены из нормально распределенных генеральных совокупностей с одной и той же дисперсией, равной 1, и математическими ожиданиями 0 и 1 соответственно². Проверим гипотезу, что $\mu_2 - \mu_1 = 2$ (на самом деле $\mu_2 - \mu_1 = 1$).

2	A	B	C	D	E	F	G	н	1
1	Выборка1	Выборка2			1 - 1 - 1		1.2	125 L.	
2	-0.300232	0.6997678			1.1.1.1				
3	-1.277683	-0,277683		вухањборачн	BH I-TOC	содинакова	ими дисп	ерсиями	1 8
4	0,2442573	1,2442573	10	воден датен	Conservation			0	1000
5	1,2764735	2,2764735		инпервил перен	60-9400 J	\$8\$1.\$8\$31	7	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Contract of Contract
6	1,1983502	2,1983502		Minister and a second	S (meen	\$A\$1:\$A\$51	7	Othe	943
7	1,7331331	2.7331331				10		Cros	era l
8	-2.183588	-1,183588	- 1	Dimonent-Halocas	средняя ра	EHOCTL:	2		
9	-0,234181	0,7658188		P Mense					
10	1,0950225	2,0950225		an en la ce	-				
11	-1,086701	-0.086701		Electra lotto					
12	-0.690204	0,3097958	1	Паранетры выво	N.B.N				
13	-1,690432	-0,690432		C Deputy-cit set	nemati:	\$2:61	2		
14	-1,846911	-0,846911		C How & patro	A THET				
15	-0,977629	0,0223705							
16	-0,773507	0,2264929		HORMA DISCOM	sugars.				
17	-2,117931	-1,117931	- 3. -				_		
18	-0,567925	0,4320751							
10	0.404049	0.5050524							

Рис. 5.23. Исходные данные и диалоговое окно Двухвыборочный t-тест с одинаковыми дисперсиями

Отметим, что средство требует, чтобы δ, значение которого задается в поле Гипотетическая средняя разность, было неотрицательно. Поэтому первым (в поле ввода Интервал переменной 1) задается адрес диапазона ячеек, содержащий выборку с большим математическим ожиданием, а затем в поле Интервал переменной 2 указывается адрес второй выборки. (Диапазоны должны состоять из одного столбца или одной строки.) В поле Альфа вводится значение уровня значимости α. Результат вычислений средства Двухвыборочный t-тест с одинаковыми дисперсиями показан на рис. 5.24.

² Выборки получены с помощью средства Генерация случайных чисел.

Q.,	A	B	C	D	E	F
1	Выборка1	Выборка2		Двухвыборочный t-тест с одинекое	выми диспер	CKIRIMIN
2	-0,300232	0,6997678				
3	-1,277683	-0,277683			Выборка2	BuCoprat
4	0,2442573	1,2442573		Среднее	0,8528339	-0,107003
5	1,2764735	2,2764735		Дисперсия	1,4100187	1,3535148
6	1,1983502	2,1983502		Наблюдения	30	50
7	1,7331331	2,7331331		Объединенная дисперсия	1,3745227	
8	-2,183588	-1,183588		Гипотетическая разность средних	2	
9	-0,234181	0,7658188		dt		
10	1,0950225	2,0950225		t-статистика	-3,841723	
11	-1,086701	-0,086701		Р(T<=t) одностороннее	0,0001237	
12	-0,690204	0,3097958		t критическое одностороннее	1,6646254	
13	-1,690432	-0,690432		Р(T<=t) двухстороннее	0,0002474	
14	-1,846911	-0,846911		t критическое двухстороннее	1,9908475	ę
15	-0,977629	0.0223705			1.12	
16	-0,773507	0,2264929	-			
17	-2,117931	-1,117931				
18	-0,567925	0,4320751		1		
40	0.101010	A CONSTRA				

Рис. 5.24. Результат вычислений

В итоговой таблице приводятся следующие данные.

- Среднее выборочные средние для каждой выборки.
- Дисперсия несмещенные выборочные оценки дисперсий выборок.
- Наблюдения объемы выборок.
- Гипотетическая разность средних значение б, которое задано в диалоговом окне.
- Объединенная дисперсия "средняя" оценка дисперсии; рассчитывается по формуле $s^2 = \frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-2}$, где n и m — объемы выборок, s_i^2 оценки дисперсий (их значения приводятся в строке Дисперсия).

- df число степеней свободы; вычисляется как n + m 2.
- t-статистика значение критериальной статистики; вычисляется по фор-

муле $t = \frac{\sqrt{n+m-2}(\overline{x}-\overline{y}-\delta)}{\sqrt{\frac{n+m}{nm}}\sqrt{(n-1)s_1^2 + (m-1)s_2^2}}$, имеет распределение Стьюдента с df

степенями свободы.

- Р(T<=t) одностороннее вероятность *P*(X≤t), где X случайная величина, имеющая распределение Стьюдента с df степенями свободы, t — подсчитанное значение критериальной статистики.
- t критическое одностороннее значение квантиля $t_{\rm kp2}$ порядка 1 α pac-. пределения Стьюдента с df степенями свободы.

- Р(T<=t) двухстороннее вероятность *P*(|X|≤|*t*|), где Х случайная величина, имеющая распределение Стьюдента с *df* степенями свободы, *t* подсчитанное значение критериальной статистики.
- t критическое двухстороннее значение квантиля t_{кp1} порядка 1 α/2 распределения Стьюдента с df степенями свободы.

Нулевая гипотеза H₀: $\mu_1 - \mu_2 = \delta$ принимается, если $|t| < t_{\kappa p1}$ (в противном случае отвергается); гипотеза H₀ при конкурирующей гипотезе H₁: $\mu_1 > \mu_2 + \delta$ принимается, если $t < t_{\kappa p2}$; при конкурирующей гипотезе H₁: $\mu_1 < \mu_2 + \delta$ нулевая гипотеза принимается при выполнении неравенства $t_{\kappa p2} < t$.

Как видно из результатов расчета, в данном примере нулевую гипотезу следует отвергнуть при любых конкурирующих гипотезах.

Статистическая функция TTECT при значении аргумента Tип = 2 (см. раздел 3.8.2) вычисляет вероятности P(T<=t) двухстороннее и P(T<=t) одностороннее.

5.8. Двухвыборочный t-тест с различными дисперсиями

Это средство реализует критерий проверки гипотезы о равенстве (неравенстве) математических ожиданий распределений двух независимых генеральных совокупностей, имеющих нормальные распределения с неизвестными и различными дисперсиями. Этот критерий также называется *t*-тестом или тестом Стьюдента для неравных дисперсий, либо критерием Фишера–Беренса и подробно описывается в разделе 2.4.2.

Рассмотрим выходные данные, вычисляемые этим средством, на примере проверки нулевой гипотезы H_0 : $\mu_1 - \mu_2 = \delta$ (δ задано) против разных конкурирующих гипотез: H_1 : $\mu_1 \neq \mu_2 + \delta$ или H_1 : $\mu_1 > \mu_2 + \delta$, либо H_1 : $\mu_1 < \mu_2 + \delta$ (μ_1 и μ_2 — неизвестные математические ожидания выборок). Повторим тест на примере данных из предыдущего раздела, т.е. выборки извлечены из нормально распределенных генеральных совокупностей с одной и той же дисперсией, равной 1, и математическими ожиданиями соответственно 0 и 1. Проверим гипотезу, что $\mu_2 - \mu_1 = 2$ (на самом деле $\mu_2 - \mu_1 = 1$). Исходные данные и заполненное диалоговое окно Двухвыборочный t-тест с различными дисперсиями показаны на рис. 5.25.

Отметим, что средство требует, чтобы δ, значение которого задается в поле Гипотетическая средняя разность, было неотрицательно. Поэтому первым (в поле ввода Интервал переменной 1) задается адрес диапазона ячеек, содержащий выборку с большим математическим ожиданием, а затем в поле Интервал переменной 2 указывается адрес второй выборки. (Диапазоны должны состоять из одного столбца или одной строки.) В поле Альфа вводится значение уровня значимости α . Результат вычислений средства Двухвыборочный t-тест с различными дисперсиями показан на рис. 5.26.

В итоговой таблице приводятся следующие данные.

- Среднее выборочные средние для каждой выборки.
- Дисперсия несмещенные выборочные оценки дисперсий выборок.

	A	в	C	D	E	F	6	н	-1
1	Выборка1	Выборка2				1.0			2.1
2	-0,300232	0,6997678							
3	-1,277683	-0,277683		Пауханборачн	ый І-тес	т с различные	ни диспере	сияни	7 X
4	0,2442573	1,2442573		Засдье даные	-			100	
5	1,2764735	2,2764735		Wheepean neper	11 ROHER	\$8\$1.\$8\$31	2		_
6	1,1983502	2,1983502		M-repeat report	1012	5451-54551	2	Other	
7	1,7331331	2,7331331				. And a second second		Creation	-
8	-2,183588	-1,183588		Destrementoria	срядняя р	and(Tel 2		- Strass	-
9	-0,234181	0,7658188		₩ Матон					
10	1,0950225	2.0950225		A3-02 0.05	- 22				
11	-1,086701	-0,086701		Sector Sector					
12	-0.690204	0.3097958		Паранитры выза	ода				
13	-1,690432	-0,690432		С выходной ин	repear:	\$2.51	2		
14	-1.846911	-0,846911		CHARLED	and react				
15	-0,977629	0,0223705		Cibrasanta		1			
16	-0,773507	0.2264929		- House pacos	an Baga				
17	-2,117931	-1,117931	-	N	-			-	
18	-0.567925	0.4320751							
10	0.404049	0.5050504							

Рис. 5.25. Исходные данные и диалоговое окно Двухвыборочный t-тест с различными дисперсиями

1200	A	B	C	D	E	F
1	Выборка1	Выборка2		Двухвыборочный І-тест с различни	ыми дисперсии	MI
2	-0,300232	0,6997678				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
3	-1,277683	-0,277683			Выборка2	Выборкал
4	0,2442573	1,2442573		Среднее	0,852833942	-0,107003257
5	1,2764735	2,2764735		Дисперсия	1,410018743	1,353514772
6	1,1983502	2,1983502		Наблюдения	30	50
7	1,7331331	2,7331331		Гипотетическая разность средних	2	
8	-2,183588	-1,183588		df	60	
9	-0,234181	0,7658188		t-статистика	-3,821883531	
10	1,0950225	2,0950225		Р(T<=t) одностораннее	0,000158539	
11	-1,086701	-0,085701		t критическое одностороннее	1,670648544	
12	-0,690204	0,3097958		Р(T<=t) двухстороннее	0,000317078	
13	-1.690432	-0,690432		t критическое двухстораннее	2,000297172	
14	-1,846911	-0,846911				
15	-0,977629	0,0223705				
16	-0,773507	0,2264929				
17	-2,117931	-1,117931				
18	-0,567925	0,4320751				

Рис. 5.26. Результат вычислений

- Наблюдения объемы выборок.
- Гипотетическая разность средних значение б, которое задано в диалоговом окне.

df — число степеней свободы; вычисляется по формуле

$$\frac{\left(\frac{s_1^2}{n} + \frac{s_2^2}{m}\right)^2}{\frac{(s_1^2/n)^2}{n-1} + \frac{(s_2^2/m)^2}{m-1}}, где$$

 s_1^2 и s_2^2 — несмещенные оценки дисперсий (их значения приводятся в строке Дисперсия), *п* и *т* — объемы соответственно первой и второй выборок.

t-статистика — значение критериальной статистики; вычисляется по формуле $t = \frac{\overline{x} - \overline{y} - \delta}{\int s_1^2 + s_2^2}$, имеет распределение, близкое к распределению Стью-

$$\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{m}}$$

дента с df степенями свободы.

- $P(T \le t)$ одностороннее вероятность $P(X \le t)$, где X случайная величина, имеющая распределение Стьюдента с df степенями свободы, t — подсчитанное значение критериальной статистики.
- t критическое одностороннее значение квантиля t_{кp2} порядка 1 α распределения Стьюдента с df степенями свободы.
- P(T<=t) двухстороннее вероятность P(|X|≤|t|), где X случайная величина, имеющая распределение Стьюдента с df степенями свободы, t — подсчитанное значение критериальной статистики.
- t критическое двухстороннее значение квантиля $t_{\rm kpl}$ порядка $1 \alpha/2$ рас-٠ пределения Стьюдента с df степенями свободы.

Нулевая гипотеза H₀: $\mu_1 - \mu_2 = \delta$ принимается, если $|t| < t_{{
m kp1}}$ (в противном случае отвергается); гипотеза H_0 при конкурирующей гипотезе H_1 : $\mu_1 > \mu_2 + \delta$ принимается, если $t < t_{\text{кp2}}$; при конкурирующей гипотезе H₁: $\mu_1 < \mu_2 + \delta$ нулевая гипотеза принимается при выполнении неравенства $t_{{}_{\mathrm{KP2}}} < t$.

Как видно из результатов расчета, в данном примере нулевую гипотезу следует отвергнуть при любых конкурирующих гипотезах.

Статистическая функция TTECT при значении аргумента Тип = 3 (см. раздел 3.8.2) вычисляет вероятности P(T<=t) двухстороннее и P(T<=t) одностороннее.

5.9. Парный двухвыборочный t-тест для средних

Это средство реализует критерий проверки гипотезы о равенстве (неравенстве) математических ожиданий распределений двух зависимых выборок, имеющих нормальные распределения. Этот критерий также называется t-тестом или тестом Стьюдента для парных наблюдений и подробно описан в разделе 2.4.2.

Рассмотрим выходные данные, вычисляемые этим средством, на примере проверки нулевой гипотезы H_0 : $\mu_1 - \mu_2 = \delta$ (δ задано) против разных конкурирующих гипотез: H₁: $\mu_1 \neq \mu_2 + \delta$ или H₁: $\mu_1 > \mu_2 + \delta$, либо H₁: $\mu_1 < \mu_2 + \delta$ (μ_1 и μ_2 — неизвестные математические ожидания выборок). Рассмотрим пример, когда выборки извлечены из нормально распределенных генеральных совокупностей с математическими ожиданиями соответственно 0 и 1.

Проверим гипотезу, что $\mu_2 - \mu_1 = 1,5$ (на самом деле $\mu_2 - \mu_1 = 1$). Исходные данные и заполненное диалоговое окно Парный двухвыборочный t-тест для средних показаны на рис. 5.27.

6.	A	8	C	D	E	F	6	н	- 1
1	Выборка1	Выборка2							1.11
2	-0,300232	0,3995357	-		_	1			
3	-1,277683	-1,5553663	Парна	ng trakenap	орочный	тест для с	DUTHEX		×
4	0,2442573	1,4885146	Brow	HIG THREE	and I		1	C OK	
5	1,2764735	3,5529471	19470	pear repense	OLT: 1	861-88631	거	The second states of	
6	1,1983502	3,3967004	19410	рват перенен	69 2 F	1441-54431	2	Опчена	
7	1,7331331	4,4662662	-			-		Creases	1
8	-2,183588	-3,3671753	Detto	петическам сря	едники разно	CTE: 1,	5		4
9	-0,234181	0,5316375	F M	ыткон					
10	1,0950225	3,1900451	and	har faces					
11	-1,086701	-1,1734013	1	an luxo					
12	-0,690204	-0,3804083	Tapa	метры вывода					
13	-1,690432	-2,3808647	(F B)	цатан Конфоны	part:	:D\$1	2		
14	-1,846911	-2,6938218	CH	nau i patovali	NOT T	2			
15	-0,977629	-0,955259	C.4						
16	-0,773507	-0,5470141	1.11	инин рабочая з	Jaca				
17	-2,117931	-3,2358824	_	-		-			
18	-0,567925	-0,1358497							

Рис. 5.27. Исходные данные и диалоговое окно Парный двухвыборочный t-тест для средних

Отметим, что средство требует, чтобы δ , значение которого задается в поле Гипотетическая средняя разность, было неотрицательно. Поэтому первым (в поле ввода Интервал переменной 1) задается адрес диапазона ячеек, содержащий выборку с большим математическим ожиданием, а затем в поле Интервал переменной 2 указывается адрес второй выборки. (Диапазоны должны состоять из одного столбца или одной строки.) В поле Альфа вводится значение уровня значимости α . Результат вычислений средства Парный двухвыборочный t-тест для средних показан на рис. 5.28.

В итоговой таблице приводятся следующие данные.

- Среднее выборочные средние для каждой выборки.
- Дисперсия несмещенные выборочные оценки дисперсий выборок.
- Наблюдения объемы выборок.
- Корреляция Пирсона выборочный коэффициент корреляции; вычисляется

по формуле
$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$
.

• Гипотетическая разность средних — значение δ, которое задано в диалоговом окне.

00	A	B	C	D	E	F
-1	Выборка1	Выборка2		Парный двухвыборочный t-тест для	я средних	
2	-0,300232	0,3995357				
3	-1,277683	-1,5553663			Выборка2	Выборка 1
4	0,2442573	1,4885146		Среднее	0,937821973	-0,147168058
5	1,2764735	3,5529471		Дисперсия	9,684347868	1,410018743
6	1,1983502	3,3967004		Наблюдения	30	30
7	1,7331331	4,4662662		Корреляция Пирсона	0,489593926	
8	-2,183588	-3,3671753		Гипотетическая разность средних	1,5	
9	-0,234181	0,5316375		dt	29	
10	1,0950225	3,1900451		t-статистика	-0.831355674	
11	-1,086701	-1,1734013		Р(T<=t) одностороннее	0,206282928	
12	-0,690204	-0,3804083		t критическое одностороннее	1,699127097	
13	-1,690432	-2,3808647		Р(T<=t) двухстороннее	0.412565857	
14	-1,846911	-2,6938218		t критическое двухсторонное	2,045230758	
15	-0,977629	-0,955259			(2004) - 2000	12
16	-0,773507	-0,5470141				
17	-2,117931	-3,2358624				

Рис. 5.28. Результат вычислений

- df число степеней свободы, равное n 1.
- t-статистика значение критериальной статистики; вычисляется по фор-

муле $t = \frac{\overline{d} - \delta}{S_n / \sqrt{n}}$, где $\overline{d} = \frac{1}{n} \sum_{i=1}^n (x_i - y_i)$, $S_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - y_i - \overline{d})^2$, и имеет рас-

пределение Стьюдента с df степенями свободы.

- Р(T<=t) одностороннее вероятность *P*(X≤t), где X случайная величина, имеющая распределение Стьюдента с *df* степенями свободы, *t* подсчитанное значение критериальной статистики.
- t критическое одностороннее значение квантиля t_{кp2} порядка 1 α распределения Стьюдента с df степенями свободы.
- Р(T<=t) двухстороннее вероятность *P*(|X|≤|*t*|), где Х случайная величина, имеющая распределение Стьюдента с *df* степенями свободы, *t* подсчитанное значение критериальной статистики.
- t критическое двухстороннее значение квантиля t_{кp1} порядка 1 α/2 распределения Стьюдента с df степенями свободы.

Нулевая гипотеза H₀: $\mu_1 - \mu_2 = \delta$ принимается, если $|t| < t_{\kappa p1}$ (в противном случае отвергается); гипотеза H₀ при конкурирующей гипотезе H₁: $\mu_1 > \mu_2 + \delta$ принимается, если $t < t_{\kappa p2}$; при конкурирующей гипотезе H₁: $\mu_1 < \mu_2 + \delta$ нулевая гипотеза принимается при выполнении неравенства $t_{\kappa p2} < t$.

Как видно из результатов расчета, в данном примере нулевую гипотезу следует принять при любых конкурирующих гипотезах.

Статистическая функция TTECT при значении аргумента Tип = 1 (см. раздел 3.8.2) вычисляет вероятности P(T<=t) двухстороннее и P(T<=t) одностороннее.

5.10. Двухвыборочный F-тест для дисперсий

Это средство реализует критерий Фишера проверки равенства дисперсий двух независимых выборок из нормально распределенных генеральных совокупностей с дисперсиями соответственно σ_1^2 и σ_2^2 . Критерий подробно описан в разделе 2.4.2.

Рассмотрим выходные данные, вычисляемые этим средством, на примере проверки нулевой гипотезы H_0 : $\sigma_1^2 = \sigma_2^2$ против конкурирующей гипотезы H_1 : $\sigma_1^2 \neq \sigma_2^2$. Рассмотрим пример, когда выборки извлечены из нормально распределенных генеральных совокупностей с равными дисперсиями 1,5. Исходные данные и заполненное диалоговое окно Двухвыборочный F-тест для дисперсий показаны на рис. 5.29.

25.	A	B	С	D	E	F	G	н	1
1	Выборка1	Выборка2	- 24			1.00	105	12 22 71	
2	-0,300232	0,6997678							
3	-1,277683	-0,277683	Ines	and boncourse	a E-roo	T 800 880000	-	2	Dal .
4	0,2442573	1,2442573	-0-0	ALLO ADDALLO			1000		
5	1,2764735	2,2764735	100	TREE OF CASE OF CASE	and Ir	1841 188131	- 1	OK	
6	1,1983502	2,1983502		- Character and a construction of the	The second se	port not of		Omenia	
7	1,7331331	2,7331331	194	repairs repenses	excan 로:	\$481 \$4\$51	7		
8	-2,183588	-1,183588	P	Memory				Distreton	
9	-0,234181	0,7658188	40	-the 0.05	-				
10	1,0950225	2,0950225		other lotes					
11	-1,086701	-0,086701	- Па	BORNER HATTEN	a				
12	-0,690204	0,3097958	IF.	Department and	CIR ALL	5251	2		
13	-1,690432	-0,690432	-	the design of					
14	-1,846911	-0,846911	10.0	HORPH DOOLHH	Det:	2			
15	-0,977629	0,0223705		Новал рабочал	Gena				
16	-0,773507	0,2264929	-						
17	-2,117931	-1,117931							
18	-0,567925	0,4320751						1	_

Рис. 5.29. Исходные данные и диалоговое окно Двухвыборочный F-тест для дисперсий

Отметим, что первой (в поле Входной интервал 1) должна задаваться выборка, имеющая большую дисперсию. В поле Альфа вводится значение уровня значимости а. Результат вычислений средства Двухвыборочный F-тест для дисперсий показан на рис. 5.30.

В итоговой таблице приводятся следующие данные.

- Среднее выборочные средние для каждой выборки.
- Дисперсия несмещенные выборочные оценки дисперсий выборок.
- Наблюдения объемы выборок.
- df числа степеней свободы, равные *n* 1 и *m* 1; *n* и *m* объемы выборок.

F — значение критериальной статистики, вычисляемой по формуле

$$S_x^2$$
 $C_x^2 = \frac{1}{2} \sum_{n=1}^{n} C_n^2 = \frac{1}{2} \sum_{n=1}^{m} C_n^2 = \frac{1}$

$$F = \frac{S_x}{S_y^2}$$
, где $S_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$, $S_y^2 = \frac{1}{m} \sum_{i=1}^{n} (y_i - \overline{y})^2$, и имеющей F -

распределение со степенями свободы $k_1 = n - 1$ и $k_2 = m - 1$ (о *F*-распределении речь идет в разделе 1.5.7).

14	A	В	0	D	E	F	
1	Выборка1	Выборка2		Двухвыборочный F-тест для д	исперсии		
2	-0,300232	0,6997678					
3	-1,277683	-0,277683		Contraction of the second s	Выборка2	Burdopvat	
4	0,2442573	1,2442573		Среднее	0,852833942	-0,107003257	
5	1,2764735	2,2764735		Диспарсия	1,410018743	1,353514772	
6	1,1983502	2,1983502		Наблюдения	30	50	
7	1,7331331	2,7331331		df	29	49	
8	-2,183588	-1,183588		F	1,041746106	1201	
9	-0,234181	0,7658188		P(F<=t) одностороннее	0,439884678		
10	1,0950225	2,0950225		F критическое одностороннее	1,698879259		
11	-1,086701	-0,086701			NUMBER OF STREET		
12	-0,690204	0,3097958					
13	-1,690432	-0,690432					
14	-1,846911	-0,846911					
15	-0,977629	0,0223705					
16	-0,773507	0,2264929					

Рис. 5.30. Результат вычислений

- P(F<=f) одностороннее вероятность P(X≤F), где X случайная величина, имеющая F-распределение с df степенями свободы, F подсчитанное значение критериальной статистики.
- F критическое одностороннее значение квантиля *t* порядка 1 α *F*-распределения с *df* степенями свободы.

Нулевая гипотеза H_0 принимается, если F < t (в противном случае отвергается). Как видно из результатов расчета, в данном примере нулевую гипотезу следует принять.

Статистическая функция ФТЕСТ (см. раздел 4.8.3) вычисляет удвоенную вероятность P(F<=f) одностороннее.

5.11. Однофакторный дисперсионный анализ

Это средство реализует критерий проверки гипотезы о равенстве математических ожиданий нескольких независимых выборок, построенный на основе дисперсионного анализа. Однофакторный дисперсионный анализ описан в разделе 3.4.2. Здесь покажем применение средства Однофакторный дисперсионный анализ и опишем его выходные данные.

На рис. 5.31 показаны три выборки, имеющие нормальное распределение с математическими ожиданиями 0, 0,5 и 1 и среднеквадратическими отклонениями 1, 2 и 3 соответственно. Объемы выборок — 50, 40 и 30 значений. (Выборки сгенерированы с помощью средства Генерация случайных чисел.) На рис. 5.31 также показано заполненное диалоговое окно Однофакторный дисперсионный анализ. Обращаем внимание, что все три выборки задаются в виде одного диапазона ячеек. В случае, когда выборки имеют разные размеры, диапазон задается в соответствии с наибольшей выборкой и неизбежно содержит пустые ячейки. Но средство правильно определяет объемы выборок. Также отметим, что в данном случае результаты анализа будут выводиться на отдельный рабочий лист с именем Результаты, который автоматически вставится в текущую рабочую книгу.

181	A	B	C	D	E	F	Ğ	H	t 1	
1	Выборка1	Выборка2	Выборка3		hand a start of the	. Sugar				-
2	-0,300232	5,4675145	2,8387391	Однофая	торный дис	персиан	eseñ desm	HC21	17	×
3	-1,277683	0,6974558	-1,77098	Backheise 1	Carete	-		-	OK.	6
4	0,2442573	-1,26407	2,7289108	BEODHOUL	entepisient:	\$4\$3	:\$C\$51	Э	The second second	1
5	1,2764735	-1,081916	3,839206	TENTINE	0.0-447	16 no	cronduare		Отнона	
6	1,1983502	-1,124321	2,2869782			Cino	стракан		Ornania	
7	1,7331331	0,6688795	-3,444278	F Mercor	a monal cross		12		29000	1
ō	-2,183588	0,9044341	-0,25585	an da l	0.05					
9	-0,234181	-2,891124	4,9809402	Wondred 1	0.005					
10	1,0950225	-0,416739	-2,223076	Department						
11	-1,086701	0,5600608	4,8497205	index of the		_				
12	-0,690204	-0,864529	4,4165328	C B _B HOA	ной интерсол:			7		
13	-1,690432	0,5935916	3,7801343	(F HODLE	і рабочні дист:	Pasy	N-T2R-I			
14	-1,846911	1,1365735	-4,843021	CHoses	рабочан учига					
15	-0,977629	5,0526031	3,4056499		Angelon and					
16	-0,773507	-3,329191	-0,679293	-	-					_
17	-2,117931	0,4367265	-1,309082							
18	-0,567925	4,3187318	-1,046506							

Рис. 5.31. Исходные данные и диалоговое окно Однофакторный дисперсионный анализ

На рис. 5.32 показаны результаты, выводимые средством Однофакторный дисперсионный анализ. Они представлены в виде двух таблиц, озаглавленных ИТОГИ и Дисперсионный анализ. В таблице ИТОГИ выводятся основные статистические характеристики выборок: в столбце Счет — объемы выборок, в столбце Сумма — суммы выборочных значений, в столбцах Среднее и Дисперсия — соответственно выборочные средние и дисперсии.

25	A	В	C	D	E	F	G
1	Однофакторный дисг	юрсионны	й анализ				
2							
3	итоги						
4	Группы	CYENT	Сумиа	Cpedwee	Дистврсия		
5	Выборка1	50	-5,3502	-0,107	1,35351477		
6	Выборка2	40	33,1763	0,829408	4,11373951		
7	Выборка3	30	36,8944	1,229613	7,23515686		
8	101111111111		Dark-CrOAn		10122000000		
9							
10	Дисперсионный анал	143					
11	Источник вариации	55	at	MS	F	P-Skewenue	F критическое
12	Между группами	38,5561	2	19,27807	5,16640019	0,007077273	3,073765242
13	Внутри групп	436,578	117	3,731433			
14	S12 - 22						
15	Moro	475,134	119				
16							
17							

Рис. 5.32. Результат вычислений

Значения в первых четырех столбцах таблицы Дисперсионный анализ повторяют значения из дисперсионной таблицы (см. раздел 3.4.2). В столбце SS приведены суммы квадратов (межгрупповая, внутригрупповая и полная); в столбце df —

значения степеней свободы, а в столбце MS — дисперсии, межгрупповая и внутригрупповая. В столбце F записано значение критериальной статистики, в столбце P-Значение — значение вероятности $P(X \ge x)$, где X — случайная величина, имеющая F-распределение с df степенями свободы (о F-распределении речь идет в разделе 1.5.7). В столбце F критическое приводится критическое значение t, рассчитанное в соответствии с заданным уровнем значимости (параметр Альфа). Формулы для вычисления всех перечисленных значений приведены в разделе 3.4.2.

Нулевая гипотеза о равенстве математических ожиданий всех выборок принимается, если выполняется неравенство *F* ≤ *F* критическое. В нашем примере эту гипотезу следует отвергнуть.

5.12. Двухфакторный дисперсионный анализ с повторениями

Двухфакторный дисперсионный анализ описан в разделе 3.5.3. Здесь рассмотрим структуру входных данных для работы с этим средством и опишем выходные результаты. Структура входных данных представлена на рис. 5.33 (обозначения и пояснения приведены в разделе 3.5.3): в строке 1 показаны обозначения уровней фактора β ; в столбце А — обозначения уровней фактора γ ; в данном случае имеется три выборки, поэтому под общим обозначением уровней фактора γ записаны три строки числовых данных. Таким образом, в диапазоне, например, C8:C10 содержатся выборочные значения, соответствующие второму уровню фактора β и третьему уровню фактора γ .

25	A	8	C	D	E	F	G	н	0 1	J
1		Бета 1	Бета 2	Бета 3	Бета 4		- 29 - 11	2016		12 46 3
2	Гамма 1	7,026	39,023	44,031	35,4835					
-3	1	4,0449	36,93	23,0451	financia	TODING ANC	0000400	und autor	140 C 000	TODO RE
4		34,228	17,251	40,5566	- Brown and	and the second second		Contraction of the second		Coperation of the second
5	Гамма 2	22,441	6,3142	39,578	English and a		12.4	HERIC	- 1	OK
6		26,317	38,19	14,0391	0.00.001	re-reparant,	prop.	r de troj	- 2	Cristeria
7	L	5,0711	8,6951	2,9323	Hecho Ch	рок для выборя	a: 3			
8	Гамма 3	8,0257	24,941	20,6053	anatali		0.05	-		D'Evens
9		44,206	0,5838	20,1802	Repair		pro			
10	1	42,851	46,587	32,5054	Параметр	ELECTRO ELECTR				
11	Гамма 4	8,9342	14,128	4,12927	Chan				2	
12		4,0812	13,934	13,7668		enteringener.	-		-	
13		16,146	28,139	17,7037	P. HERE	patores acri				
14	Гамма 5	39,602	44,138	17,1554	CHERAN	рабочая цеята				
15	1	7,5755	38,514	36,4044						
16		2,5858	27,639	21,3896	14,2359	1				
17										

Рис. 5.33. Исходные данные и диалоговое окно Двухфакторный дисперсионный анализ с повторениями

Диалоговое окно рассматриваемого здесь средства показано на рис. 5.33. В поле Входной интервал указывается диапазон ячеек, содержащий входные данные, включая заголовки. В поле Число строк для выборки указывается ко-

личество рассматриваемых выборок, в данном случае введено число 3. В поле Альфа, как обычно, указывается значение уровня значимости.

На рис. 5.34 показаны выходные результаты работы данного средства, выведенные на отдельный рабочий лист. Выходные результаты сгруппированы в несколько таблиц. В первой таблице, озаглавленной ИТОГИ и состоящей из нескольких подтаблиц (по количеству уровней фактора ү), приводятся статистические характеристики выборочных значений, соответствующих каждому сочетанию уровней фактора β и фактора у: количество выборочных значений (строка Счет), сумма выборочных значений (строка Сумма), выборочное среднее (строка Среднее) и выборочная дисперсия (строка Дисперсия). На рис. 5.34 показана такая подтаблица для первого уровня фактора у (таблица обозначена как Гамма 1), другие подобные подтаблицы, соответствующие другим уровням фактора у, на этом рисунке не показаны. В столбце Итого подтаблиц выводятся такие же статистические характеристики выборочных значений, соответствующие одному уровню фактора у: количество выборочных значений, выборочное среднее и выборочная дисперсия (вычисляется по всем значениям данного уровня относительно общего среднего). В конце таблицы ИТОГИ выводится подтаблица Итого, в которой приведены те же характеристики, но подсчитанные по выборочным значениям для каждого уровня фактора β.

2.1	A	B	Ć	D	E	F	Ĝ	
1	Даухфакторный дисл	ерсионный	анализ с п	авторениям	lvt .			1
3	ИТОГИ	Бета 1	Eeta 2	Бета З	Бета 4	Mittara .		
4	Fanna 1	10000 C	1.100.00	12031224	1000		A	
5	Cilet	3	3	3	3	12	2	
6	Сумиа	45,299209	93,204725	107,53278	54,691573	300,8282832		
T	Среднее	15,099738	31,068242	35,877592	18,230524	25,0690236		
8	Дисперсия	276,64869	144,27967	126,5216	276,94289	231,244209		
34	Итого	2						1
35	Счет	15	15	15	15			
36	Cymrus	273,13536	384,98774	348,02225	322,19117			
37	Среднее	18,209024	25,66565	23,201483	21,479412			
38	Дисперсия	237,85875	217,7876	164,11801	244,1952			
41	Дисперсионный анал	EN/	1855565	1.16	1000	and the second second		
42	Источник вариации	55	ď	MS	F	P-Shavenue	F критическое	
43	Выборка	416,05599	4	104.014	0,5097581	0,728830298	2,605972327	
44	Сталбцы	441,70963	3	147,23654	0,7215858	0,545029484	2,838746127	
45	Взаимодействие	3517,5488	12	293,12888	1,4385839	0,190048828	2,003450509	
45	Внутри	8161,8313	40	204,04578				
47								
48	MTOTO	12537,143	59					
24								

Рис. 5.34. Выходные результаты работы средства Двухфакторный дисперсионный анализ с повторениями

В нижней части выходных результатов приведена дисперсионная таблица (обозначения и вычисляющие формулы даны в разделе 3.5.3). Здесь в первом столбце, обозначенном SS, выведены суммы квадратов: соответственно SS_1 , SS_2 , SS_3 , SS_4 и в строке Итого — SS. В столбце df приведены степени свободы сумм квадратов, а в столбце MS — значения соответствующих дисперсий. В столбце F вычислены значения критериальных статистик, т.е. отношения дисперсий s_1^2 , s_2^2 , s_3^2 к дисперсии s_4^2 .

В столбце Р-Значение вычисляются вероятности $P(X \ge F)$, где X — случайная величина, имеющая *F*-распределение со степенями свободы, значения которых приведены в столбце df: первое значение степени свободы — из соответствующей строки этого столбца, а второе — всегда из четвертой строки, *F* — значение из столбца F. Например, значение в ячейке F43 (см. рис. 5.34), можно вычислить по формуле Excel =FPACП(E43;C43;C46). Эти значения используются для проверки гипотез о значимом влиянии факторов или их взаимного влияния: если вероятность больше заданного уровня значимости, то нулевая гипотеза об отсутствии влияния принимается, в противном случае — отвергается.

В столбце F критическое вычисляются критические значения, соответствующие заданному в диалоговом окне Двухфакторный дисперсионный анализ с повторениями уровню значимости α . Эти значения вычисляются как квантили порядка $1 - \alpha$ *F*-распределения со степенями свободы, значения которых определяются так же, как при вычислении вероятностей из столбца P-Значение. Например, значение в ячейке G43 (см. рис. 5.34) можно вычислить по формуле Excel =FPACПОБР(0,05;C43;C46). Эти значения используются для проверки гипотез о значимом влиянии факторов или их взаимного влияния: если значение в этом столбце больше значения в столбце F той же строки, то нулевая гипотеза об отсутствии влияния принимается, в противном случае — отвергается. Здесь принимаются все три нулевые гипотезы об отсутствии влияния факторов β и γ и их взаимного влияния. Однако значение в столбце F третьей строки (соответствует взаимному влиянию факторов) значительно больше аналогичных значений для отдельных факторов, и на это необходимо обратить внимание.

5.13. Двухфакторный дисперсионный анализ без повторений

Двухфакторный дисперсионный анализ описан в разделе 3.5.3. Структура входных данных показана на рис. 5.35 (обозначения и пояснения даны в разделе 3.5.3): в строке 1 приводятся обозначения уровней фактора β; в столбце А обозначения уровней фактора γ; в диапазоне, обозначенном этими заголовками, введены числовые данные.

Диалоговое окно этого средства показано на рис. 5.35. В поле Входной интервал указывается диапазон ячеек, содержащий входные данные; если в этот диапазон включены заголовки строк и столбцов, то следует установить флажок опции Метки. В поле Альфа указывается значение уровня значимости.

На рис. 5.36 представлены выходные результаты работы данного средства, выведенные на отдельный рабочий лист. Выходные результаты сгруппированы в две таблицы. В первой таблице, озаглавленной ИТОГИ, приводятся статистические характеристики выборочных значений, соответствующих каждому уровню фактора β (группировка по столбцам) и каждому уровню фактора γ (группировка по строка): количество выборочных значений (столбец Счет), сумма выборочных значений (столбец Сумма), выборочное среднее (столбец Среднее) и выборочная дисперсия (столбец Дисперсия).

В нижней части выходных результатов приведена дисперсионная таблица (обозначения и вычисляющие формулы даны в разделе 3.5.3). Здесь в первом

столбце, обозначенном SS, выведены суммы квадратов: соответственно SS_1 , SS_2 , SS_3 и в строке Итого — SS. В столбце df приведены степени свободы сумм квадратов, а в столбце MS — значения соответствующих дисперсий. В столбце F вычислены значения критериальных статистик, т.е. отношения дисперсий s_1^2 и s_2^2 к дисперсии s_3^2 .

14	A	B	C	D	E	F	G	н		J
1		Бета 1	Бета 2	Бета 3	Бета 4 1	101		1.11.11.1		1.000
2	Гамма 1	7,026	39,023	44,031	35,4835					
3	Гамма 2	22,441	6,3142	39,578	15,5309					
4	Гамма 3	8,0257	24,941	20,6053	9,95418					1
5	Гамма 4	8,9342	14,128	4,129	вухфактор	ный дист	терсионный	анална бе	а повторя	
6 7 8 9 10 11 12 13 14	Галла Б	39,602		17,15	Владная длян Валаной ните Ф. Матна Альфа: (2,05 Паранагры вы Паранагры вы Паранагры вы Паранагры вы Паранагры вы	ые реал: непервал: lowel giecr:	\$A\$1.95	» <u>)</u>	Orres Orres	a 2
15 16 17					← новая раб	сная (река	1		-	

Рис. 5.35. Исходные данные и диалоговое окно Двухфакторный дисперсионный анализ без повторений

20	A	B	C	D	E	F	G
1	Двужфанторный диспера	WORKER BAR	ализ без п	бинядатар			
3	итоги	C-iem	Сумма	Среднее	Дисперсия		
4	Гамиа 1	- 4	125,5637	31,39091	278,140477		
5	Гамиа 2	4	83,86401	20,966	197,599247		
6	Гамиа 3	4	63,52634	15,88158	67,0796283		
7	Гамиа-4	4	68,89708	17,22427	283,047608		
8	Гамия 5	4	110,198	27,54949	287.150458		
9							
10	Бета 1	5	88,02914	17,20583	196,333937		
11	Бета 2	5	128,5443	25,70885	256,94181		
12	Бета 3	5	125,499	25,0898	272,771505		
13	Бета 4	5	111,9786	22,39533	229,382944		· · · · · · · · · · · · · · · · · · ·
14							
16	Дисперсионный анализ						
17	Источник вариации	SS	ď	MS	F	P-SHEHEMJE	F критическое
18	Строки	713,9327	4	178,4832	0,68917132	0,613289689	3,258160053
19	Сталбцы	225.2646	3	75,09819	0,2999356	0,831854274	3,490299605
20	Попрешность	3107,788	12	258,9823			1-310-52,200,000 pt
21				0.00000000			
22	Vtroro	4046,985	19				
23					-		

Рис. 5.36. Выходные результаты работы средства Двухфакторный дисперсионный анализ без повторений

В столбце Р-Значение вычисляются вероятности $P(X \ge F)$, где X — случайная величина, имеющая *F*-распределение со степенями свободы, значения которых приведены в столбце df: первое значение степени свободы — из соответствующей строки этого столбца, а второе — всегда из третьей строки, *F* — значение из столбца F. Например, значение в ячейке E18 (см. рис. 5.36) можно вычислить по формуле Excel = FPACП(D18;C18;C20). Эти значения используются для проверки гипотез о значимом влиянии факторов: если вероятность больше заданного уровня значимости, то нулевая гипотеза об отсутствии влияния принимается, в противном случае — отвергается.

В столбце F критическое вычисляются критические значения, соответствующие заданному в диалоговом окне Двухфакторный дисперсионный анализ без повторений уровню значимости α . Эти значения вычисляются как квантили порядка $1 - \alpha$ *F*-распределения со степенями свободы, значения которых определяются так же, как при вычислении вероятностей из столбца P-Значение. Например, значение в ячейке G18 (см. рис. 5.36) можно вычислить по формуле Excel =FPACПОБР(0,05;C18;C20). Эти значения используются для проверки гипотез о значимом влиянии факторов или их взаимного влияния: если значение в этом столбце больше значения в столбце F той же строки, то нулевая гипотеза об отсутствии влияния принимается, в противном случае — отвергается. Здесь принимаются обе нулевые гипотезы об отсутствии влияния факторов β и γ .

5.14. Корреляция

Это средство вычисляет корреляционную матрицу компонентов многомерной выборки. Диагональные элементы матрицы равны единице, а внедиагональные — коэффициентам корреляции соответствующих компонентов (о коэффициентах корреляции речь идет в разделе 1.2.5). На рис. 5.37 показаны многомерная выборка, имеющая совместное нормальное распределение, причем первая пара компонентов зависима с коэффициентом корреляции 0,5. С таким же коэффициентом корреляции зависимы третий и четвертый компоненты выборки. Первая и вторая пара компонентов между собой независимы.

25	A	В	C	D	E	F	G	н	1	J
1	X1	X2	X3	X4						1.11
2	0,2178	0,5137	0,4605	-0,791						
3	-0,198	-0,151	-1.767	-1,551	Коррел	яция				E 18
4	0,3697	0,7148	-1,534	-0,182	-800,8-67	0,3>+6.0				~ I
5	0,8551	1,4855	0,6866	0,5774	Rg0,g-ex	el se-mipstart:		\$4\$1.\$0\$31	2	<u></u>
6	-1,062	-0,675	0,0719	-0,563	Francis	weaker.	1	· mormitiae		Oneso
7	0,4897	1,1324	-1,577	-1,136		100000	1	no crookael		common 1
8	-0,058	-0,436	-1,783	-1,243	IF Max	uli o recordi revi		NAMES OF TAXABLE		Ofrees
9	-0,415	0,4459	-0,424	-0,517	and the second	and a subsector redec				
10	0,3758	-0,787	-0,419	-0,091	Парани	пры выясця				
11	-0,466	-0,181	-0,235	-0,89	IF BMP	пеадолні Кондо		\$E\$1	2	
12	-2,614	-0,833	0.0581	-0,323	CHO	ый рабочий пист	i i			
13	-0,926	0,1319	-0,106	0,9263	C					
14	0,5886	1,3592	-0,939	0,4448	HOP	en bebores Ber	2			
15	-0,058	0,0652	0,1405	0,1409	-				-	
16	0,0418	0,8246	0.0795	-1,735	_					

Рис. 5.37. Исходные данные и диалоговое окно Корреляция

Внедиагональные элементы корреляционной матрицы рассчитываются по стандартным формулам: коэффициент корреляции r_{xy} между компонентами x и y многомерной выборки вычисляется как

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}}, \text{ где } \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \ n - \text{ объем выборки.}$$

Отметим, что эти же вычисления выполняет функция КОРРЕЛ (см. раздел 4.10.2).

На рис. 5.38 показан результат применения средства Корреляция. Поскольку корреляционная матрица симметрична, выводится только нижняя ее половина.

	A	B	C	D	E .	F	6	н	
1	X1	X2	Х3	X4	1 - C - 1	Xt	X2	X3	×4
2	0,2178	0,5137	0,4605	-0,791	X1	1			
3	-0,198	-0,151	-1,767	-1,551	X2.	0,539796			
4	0,3897	0,7148	-1,534	-0,182	X3	-0,11155	-0,05404	1	
5	0.6551	1,4855	0,6866	0,5774	X4	0.07675	0,079159	0,49465	1
6	-1.062	-0,675	0,0719	-0,563	2				
7	0,4897	1,1324	-1,577	-1,136		-			
8	-0,058	-0,436	-1,783	-1,243					
9	-0,415	0,4459	-0,424	-0,517					
10	0,3756	-0,787	-0,419	-0,091					
11	-0,466	-0,181	-0,235	-0,89					
12	-2,614	-0,833	0,0681	-0,323					

Рис. 5.38. Результат применения средства Корреляция

5.15. Ковариация

n

Это средство вычисляет ковариационную матрицу компонентов многомерной выборки. Диагональные элементы матрицы равны выборочным дисперсиям, а внедиагональные — ковариациям соответствующих компонентов (о ковариациях речь идет в разделе 1.2.5). На рис. 5.39 показана многомерная выборка, имеющая совместное нормальное распределение, причем первая пара компонентов зависима с коэффициентом корреляции 0,5. С таким же коэффициентом корреляции зависимы третий и четвертый компоненты выборки. Первая и вторая пары компонентов между собой независимы.

Внедиагональные элементы ковариационной матрицы рассчитываются по формулам: ковариация соv(X, Y) между компонентами x и y многомерной выборки вычисляется как

$$\operatorname{cov}(X,Y) = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$
, где $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$, n — объем выборки.

Отметим, что эти же вычисления выполняет функция КОВАР (см. раздел 4.10.1). Диагональные элементы матрицы — выборочные дисперсии — вычисляются по

стандартным формулам $S_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$. Выборочную дисперсию также вычис-

ляют функции ДИСПР и ДИСПРА (см. раздел 4.5.2).

	A	Ð	C	D.	E	F	G	H	1	J
1	X1	X2	X3	X4			24.070		1.11	
2	0,2178	0,5137	0,4605	-0,791						
3	-0,198	-0,151	-1,767	-1,551	Косариа	0.44				19 12
4	0,3697	0,7148	-1,534	-0,182	Водные,	73+410	-			. CM
5	0.6551	1,4855	0,6866	0,5774	Roome-cold	e-nicean:	\$4\$	1 \$0\$31	거 나	
6	-1,062	-0,675	0,0719	-0,563	former	0000	Œ m	o crontuaei		Отнена
7	0,4897	1,1324	-1,577	-1,136	a fund	Notes -	Co	D CTOOKDH		common 1
8	-0,058	-0,436	-1,783	-1,243	R Manuel	a renaria ranne	. NG	0.0000	100	Seren 1
9	-0,415	0,4459	-0,424	-0.517	The provent	a separate caper	·			
10	0.3756	-0.787	-0,419	-0,091	Thiplateirp	IN REACTER				
11	-0,466	-0,181	-0,235	-0,89	F BANKA	Incagonei Ro-	\$63	1	2	
12	-2,614	-0,833	0,0681	-0,323	C HODAG	instead acts	- E			
13	-0,926	0,1319	-0,106	0,9263	Current					
14	0.5886	1,3592	-0,939	0,4448	HODAR	bacoves liter o				
15	-0.058	0,0652	0,1405	0,1409						
18	0,0418	0,8248	0,0795	-1,735						

Рис. 5.39. Исходные данные и диалоговое окно Ковариация

На рис. 5.40 показан результат применения средства Ковариация. Поскольку ковариационная матрица симметрична, выводится только нижняя ее половина.

15	A	В	C	D	E	F	G	н	1.
1	X1	X2	X3	X4		X1	×2	X3	×4
2	0,2178	0,5137	0,4605	-0,791	X1	0,888266	5		
3	-0,198	-0.151	-1,767	-1,551	X2	0,466787	0,841851		
4	0,3697	0,7148	-1,534	-0,182	X3	-0,10688	-0,05041	1,033594	
5	0,6551	1,4855	0,6866	0,5774	X4	0,062676	0,062931	0,435737	0,750784
6	-1,062	-0,675	0,0719	-0,563					
7	0,4897	1,1324	-1,577	-1,138					
8	-0,058	-0,436	-1,783	-1,243					
9	-0,415	0,4459	-0,424	-0,517					
10	0,3756	-0.787	-0,419	-0,091					
11	-0,466	-0,181	-0,235	-0,89					
12	-2,614	-0,833	0,0681	-0,323					

Рис. 5.40. Результат применения средства Ковариация

5.16. Регрессия

Задачи регрессионного анализа описаны в разделе 3.4. Покажем, что для проведения регрессионного анализа может сделать средство Регрессия. В отдельных таблицах оно вычисляет (рис. 5.42 и 5.43) следующее:

методом наименьших квадратов — коэффициенты линейной (относительно • этих коэффициентов) функции регрессии; вид функции регрессии определяется структурой исходных данных (подробнее об этом речь идет ниже);

- коэффициент детерминации и связанные с ним величины (таблица Регрессионная статистика);
- дисперсионную таблицу и критериальную статистику для проверки значимости регрессии (таблица Дисперсионный анализ);
- для каждого коэффициента регрессии среднеквадратическое отклонение и другие его статистические характеристики, позволяющие проверить значимость этого коэффициента и построить для него доверительные интервалы;
- значения функции регрессии и *остатки* разности между исходными значениями переменной Y и вычисленными значениями функции регрессии (таблица Вывод остатка);
- вероятности, соответствующие упорядоченным по возрастанию значениям переменной Y (таблица Вывод вероятности).

Кроме того, средство Регрессия строит три типа графиков, которые будут показаны ниже.

Пусть входной интервал X состоит из k диапазонов-столбцов, содержащих значения $\{x_{i1}\}, \{x_{i2}\}, ..., \{x_{ik}\}$ переменных X₁, X₂, ..., X_k. В каждом диапазоне содержится одинаковое количество значений. Входной интервал Y, состоящий из одного диапазона-столбца, должен содержать такое же количество значений. Средство Регрессия вычисляет коэффициенты функции регрессии вида

$$Y = m_1 X_1 + m_2 X_2 + \ldots + m_k X_k + b.$$

Это уравнение линейной множественной регрессии, если переменные X_i независимы. На основе данного уравнения, используя соответствующие значения переменных X_i , можно получить множество других уравнений регрессии. Например, если в качестве переменных X_i взять значения одной переменной X в степени *i* (т.е. $X_i = X^i$), получим уравнение полиномиальной регрессии

$$Y = m_1 X + m_2 X^2 + ... + m_k X^k + b.$$

На рис. 5.41 показан рабочий лист с исходными данными: входной интервал X состоит из пяти столбцов. В первом столбце представлены значения переменной X_1 , во втором — квадраты значений переменной X_1 , в третьем — значения второй переменной X_2 , в четвертом — квадраты значений переменной X_2 , в пятом — произведения значений переменных X_1 и X_2 . Таким образом, в данном случае Регрессия будет вычислять значения коэффициентов уравнения регрессии вида

$$\mathbf{Y} = m_1 \mathbf{X}_1 + m_2 \mathbf{X}_1^2 + m_3 \mathbf{X}_2 + m_4 \mathbf{X}_2^2 + m_5 \mathbf{X}_1 \mathbf{X}_2 + b.$$

Отметим, что значения зависимой переменной Y в столбце F получены по формуле

$$\mathrm{Y} = \mathrm{X}_1 - 2\mathrm{X}_1{}^2 + \mathbf{0.5X}_2 - \mathrm{X}_2{}^2 + 5\mathrm{X}_1\mathrm{X}_2 + \mathbf{0.5X}_2$$

Здесь случайная переменная є имеет стандартное нормальное распределение. (О моделировании случайных величин речь идет в главе 7.)

Диалоговое окно средства Регрессия показано на рис. 5.41. В поле Входной интервал У вводится адрес диапазона, содержащего значения зависимой переменной У. Диапазон должен состоять из одного столбца. В поле Входной интервал Х вводится адрес диапазона, содержащего значения переменной Х. Диапазон должен состоять из одного или нескольких столбцов, но не более чем из 16 столбцов. Если указанные в полях Входной интервал У и Входной

интервал X диапазоны включают заголовки столбцов, то необходимо установить флажок опции Метки — эти заголовки будут использованы в выходных таблицах, сгенерированных средством Регрессия.

17	A	Ð	C	D	E	F			
1	X1	Ke.X1	X2	Ks. X2	X1°X2	Y	Perpeccia		2 X
2	1	1	-5	25	-5	-55,093	BROAD AND AND AND AND AND AND AND AND AND A		
3	2	- 4	1	1	2	3,689	Весдной интервал У	年61年621	7
4	3	9	.9	81	27	43,664		2019/10/1	Others
5	-4	16	10	100	40	77,998	Вусиной челероал Х:	\$A\$1:\$E\$21	3
6	5	- 25	-1	1	-5	-70,092		_	Creases
7	Ð	36	-7	49	-42	-329,3	I Малин	Г Константа - ноль	
8	- 7	49	3	8	21	5,0105	Ф уровань надожности:	90 %	
9	- 8	64	10	100	80	185,89		here and the second	
10	9	81	7	49	83	115,57	Парамотры вывода		
11	10	100	10	100	100	214,85	C De annual annual	(1
12	11	121	1	1	- 11	-174,91	, allectation settidorari	-	<u></u>
13	12	144	-6	. 36	-72	-675,11	Навый рабочий дист:		
14	13	169	4	16	52	-78,483	С Навая рабочая ненга		
15	-14	196	-5	25	-70	-755,18	~~~~		
16	15	225	-5	25	75	-83,217	OCTATION		
17	16	256	-7	49	-112	-1108,7	> Octifier	М Срафек остатов	
18	17	289	-9	81	-153	-1411,8	CDMUMITHIOSIMAME OCLUMN	 P Tpates gogbops 	
19	18	324	-4	16	-72	-1007,7	Linear use percenters		
20	18	361	- 5	- 25	.95	-250,99	P Contex accusto un accusto	(approx)	
21	20	-400	0	0	0	-790,39	- Chartes Brhanesers Sebour	MACHINE .	
22									
23	1.1								

Рис. 5.41. Исходные данные и диалоговое окно Регрессия

Флажок опции Константа - ноль следует установить, если в уравнении регрессии константа *b* принудительно полагается равной нулю. Опция Уровень надежности устанавливается тогда, когда необходимо построить доверительные интервалы для коэффициентов регрессии с доверительным уровнем, отличным от 0,95, который используется по умолчанию. После установки флажка опции Уровень надежности становится доступным поле ввода, в котором вводится новое значение доверительного уровня.

В области Остатки имеются четыре опции: Остатки, Стандартизованные остатки, График остатков и График подбора. Если установлена хотя бы одна из них, то в выходных результатах появится таблица Вывод остатка, в которой будут выведены значения функции регрессии и остатки — разности между исходными значениями переменной Y и вычисленными значениями функции регрессии. Значения этой таблицы и возможности каждой из опций показаны ниже.

В области Нормальная вероятность имеется одна опция — График нормальной вероятности; ее установка порождает в выходных результатах таблицу Вывод вероятности и приводит к построению соответствующего графика.

На рис. 5.42–5.44 показаны части рабочего листа с выходными результатами средства Регрессия, которые получены на основе исходных данных, приведенных на рис. 5.41. Рассмотрим подробнее эти результаты.

В таблице Регрессионная статистика приводятся следующие данные.

• Множественный R — корень из коэффициента детерминации R², приведенного в следующей строке. Другое название этого показателя — индекс корреляции, или множественный коэффициент корреляции (см. раздел 3.3.1).

11.	A	В	C	D	E	F
1	выводитогов	1. 2000 1.	1.11.11	2.2	0.0	1 C C
2	and the second second	19				
3	Резрессионная стат	ucroura				
4	Мнокественный Я	0,9999998881				
5	R-квадрат	0,9999997761				
6	Нормированный R-квадрат	0.999996962				
7	Стандартная ошибка	0.83074245				
8	Наблюдения	20				
9						
10	Дисперсионный знализ			6.554		19
11		đf	SS	MS	F	Значимость F
12	Perpeccial	5	4315879.352	863135,8704	1250600,44	5.01903E-39
13	Octatok	14	9,661862258	0,690133018		
14	Vitoro	19	4315689,014			
15						

Рис. 5.42. Верхняя часть рабочего листа с выходными результатами

15	A	Ð	c	D	E	- E	G	H	1.5
15		Козффициалты	Стандартная оцибга	1-cmattorcound	R-SHAMANNA	HUNOLUS 95%	Варнина 95%	HUDRING 90	Begolitage 9
17	т-тератачанна	-0,253888671	0,648126825	-0,391699463	0,7011799	-1,643962	1,13622464	-1,395419	0,8876816
극문	201	1,123005378	0,138017336	8,136697854	1,1245-08	0,8269874	1,41902339	0,8799142	1,3660965
12	N.01	-2,005998197	0,000417434	100,0003020	1,9565-28	0.4034064	-1,99(20935 0.051002117	0.6054660	0.0101320
21	0.12	10102020110	0.051001435	142.002104	1,4675-23	4.0255205	100520	4.033873	0.807383
22	01702	4,90588298	0,007020013	769,3407926	2,704E-33	4,8708104	5,00090949	4,0735139	4,9002740
22	Bullog octati	(A.				выроднер	оятности		301.0.2
20	Haditsoberive	Предсказанное т	Ocmanika	Сландартные	осталься	Deccentrate	- N		
-29	1	-54,88854595	-0,404791015	-0.557645558		2,5	+1411,7816		
30	2	2,601839089	0,087190777	0,12220916		7,5	-1108,7249		
31	3	43,88575581	-0,221342134	-1,310391966		12,5	-1007,6887		
32	4	77,25748898	0,738473754	1,03557473	11	17,5	-780,37807		
33	1	-71,40059098	1,30825897	1,834594557		22,5	-765,15889		
34		-729,3562365	0,051581852	0,072334139		27,5	-675,10838		
32	1	6,940558647	-1,928928877	-2,706373339		32,6	-329,30465		
30		194,8979413	0,104,308,729	0,25054,2949		37,5	-250,99418		
31	<u> </u>	110,6742141	-1,108008782	-1,3\$167672		47,5	-174,91024		
45	17	-1411,630421	-0,131188723	-0,183968253		82,5	77,9969726		
.46	18	+1007,819785	D(15010449	0,210494165		87,5	115,567805		
-47	19	-251,3172928	9,323114831	0,453109609		92,5	185,08231		
40		-780,1892,998	-1,187832083	-9,797400247		97,0	214,845179		
1.1.2									

Рис. 5.43. Нижняя часть рабочего листа с выходными результатами

- R-квадрат коэффициент детерминации R^2 ; вычисляется как отношение регрессионной суммы квадратов (ячейка C12) к полной сумме квадратов (ячейка C14). (О коэффициенте детерминации речь идет в разделе 3.4.3.)
- Нормированный R-квадрат вычисляется по формуле $\frac{(n-1)R^2-k}{n-k-1}$, где n —

количество значений переменной Y, k — количество столбцов во входном интервале переменной X.

- Стандартная ошибка корень из остаточной дисперсии (ячейка D13).
- Наблюдения количество значений переменной Ү.

Дисперсионная таблица соответствует аналогичной таблице из раздела 3.4.3. В столбце SS приводятся суммы квадратов, в столбце df — число степеней свободы, в столбце MS — дисперсии. Строка Регрессия соответствует одноименной

строке из таблицы в разделе 3.4.3, строка Остаток — строке Остатки и строка Итого — строке Полная. В дисперсионной таблице из раздела 3.4.3 приведены формулы, по которым вычисляет соответствующие значения средство Регрессия. В столбце F вычислено значение критериальной статистики для проверки значимости регрессии. Это значение вычисляется как отношение регрессионной дисперсии к остаточной (ячейки D12 и D13). В столбце Значимость F вычисляется вероятность полученного значения критериальной статистики. (Эту вероятность с помощью формул Excel можно вычислить как =FPACП(E12;B12;B13).) Если эта вероятность меньше, например, 0,05 (заданного уровня значимости), то гипотеза о незначимости регрессии (т.е. гипотеза о том, что все коэффициенты функции регрессии равны нулю) отвергается и считается, что регрессия значима. В данном примере регрессия значима практически с любым уровнем значимости.

Рис. 5.44. Графики, выводимые средством Регрессия

В следующей таблице (см. рис. 5.43), в столбце Коэффициенты, записаны вычисленные значения коэффициентов функции регрессии, при этом в строке Үпересечение записано значение свободного члена b. В столбце Стандартная ошибка вычислены среднеквадратические отклонения коэффициентов (о вычислении дисперсий коэффициентов речь идет в разделе 3.4.4). В столбце tстатистика записаны отношения значений коэффициентов к их среднеквадратическим отклонениям. Это значения критериальных статистик для проверки гипотез о значимости коэффициентов регрессии. В столбце Р-Значение вычисляются уровни значимости, соответствующие значениям критериальных статистик. (Их можно вычислить с помощью формулы Excel =СТЬЮДРАСП(ABS(D17);14;2), например, для значения в ячейке Е17; второй аргумент в функции СТЬЮДРАСП вычисляется как n - k - 1.) Если вычисленный уровень значимости меньше заданного уровня значимости (например, 0,05), то принимается гипотеза о значимом отличии коэффициента от нуля; в противном случае принимается гипотеза о незначимом отличии коэффициента от нуля. В данном примере только коэффициент b незначимо отличается от нуля.

В столбцах Нижние 95% и Верхние 95% приводятся границы доверительных интервалов с доверительным уровнем 0,95. Эти границы вычисляются по формулам

Нижние 95% = Коэффициент – Стандартная ошибка $\times t_{\alpha}$;

Верхние 95% = Коэффициент + Стандартная ошибка × t_α.

Здесь t_{α} — квантиль порядка α распределения Стьюдента с (n - k - 1) степенью свободы. В данном случае $\alpha = 0.95$. Аналогично вычисляются границы доверительных интервалов в столбцах Нижние 90,0% и Верхние 90,0%. Отметим, что если в диалоговом окне Регрессия не устанавливать опцию Уровень надежности, то будут повторены столбцы Нижние 95% и Верхние 95%.

Рассмотрим таблицу Вывод остатка из выходных результатов средства Регрессия. Напомним, что эта таблица появляется в выходных результатах только тогда, когда установлена хотя бы одна опция в области Остатки диалогового окна Регрессия. В столбце Наблюдение приводятся порядковые номера значений переменной Y. В столбце Предсказанное Y вычисляются значения функции регрессии $\hat{y}_i = f(x_i)$ для тех значений переменной X, которым соответствует порядковый номер *i* в столбце Наблюдение. В столбце Остатки содержатся разности (остатки) $\varepsilon_i = y_i - \hat{y}_i$, а в столбце Стандартные остатки — нормированные остатки, которые вычисляются как отношения $\varepsilon_i/s_{\varepsilon}$, где s_{ε} — среднеквадратическое отклонение остатков. Квадрат величины s_{ε} вычисляется по формуле $s_{\varepsilon}^2 = \frac{1}{n-1}\sum_{i=1}^n (\varepsilon_i - \overline{\varepsilon})^2$, где $\overline{\varepsilon}$ — среднее остатков. Здесь величину s_{ε}^2 можно вычис-

лить как отношение двух значений из дисперсионной таблицы: суммы квадратов остатков (ячейка C13) и степени свободы из строки Итого (ячейка B14).

По значениям таблицы Вывод остатка средство Регрессия строит два типа графиков: графики остатков и графики подбора (если установлены соответствующие опции в области Остатки диалогового окна Регрессия). На рис. 5.45 показаны образцы этих графиков (графики немного переформатированы по сравнению с оригиналами). Они строятся для каждого компонента переменной X в отдельности. На графиках остатков отображаются остатки, т.е. разности между исходными значениями Y и вычисленными по функции регрессии для каждого значения компонента переменной X. На графиках подбора отображаются как исходные значения Y, так и вычисленные значения функции регрессии для каждого значения компонента переменной X. (На графиках подбора, представленных на рис. 5.45, эти значения практически совпадают.)

Последней таблицей выходных результатов средства Регрессия является таблица Вывод вероятности (см. рис. 5.43). Она появляется, если в диалоговом окне Регрессия установлена опция График нормальной вероятности. Значения в столбце Персентиль вычисляются следующим образом. Вычисляется шаг $h = (1/n) \times 100\%$, первое значение равно h/2, последнее равно 100 - h/2. Начиная со второго значения каждое последующее значение равно предыдущему, к которому прибавлен шаг h. В столбце Y приведены значения переменной Y, упорядоченные по возрастанию. По данным этой таблицы строится так называемый график нормального распределения (рис. 5.46). Он позволяет визуально оценить степень линейности зависимости между переменными X и Y.

Рис. 5.45. Примеры графиков остатков и подбора

Рис. 5.46. График нормального распределения

5.17. Скользящее среднее

Метод скользящего среднего — один из наиболее широко используемых способов сглаживания значений временного ряда. Метод основан на локальном усреднении, когда за новое значение временного ряда берется среднее *k* последовательных значений, ближайших к заменяемому значению.

Пусть имеются дискретные наблюдения $y_1, y_2, ..., y_n$ и задано число k наблюдений, по которым будет проводиться усреднение. Значение скользящего среднего для значения t вычисляется по формуле $y_t = \frac{1}{k} \sum_{i=0}^{k-1} y_{t-i}$. Отметим, что по этой

формуле выполняет вычисления средство Скользящее среднее, но существуют и другие способы вычисления скользящего среднего.

На рис. 5.47 показаны исходные данные, для которых будут вычисляться скользящие средние, и диалоговое окно Скользящее среднее. В поле ввода Входной интервал в качестве исходных данных задан диапазон В1:В17. Поскольку этот диапазон содержит заголовок, установлен флажок опции Метки в первой строке. В поле Интервал вводится число k — количество значений, по которым подсчитывается скользящее среднее. Если этот параметр не задан, то по умолчанию используется значение 3.

Если установлен флажок опций Вывод графика, то будет построен график, отображающий исходные значения y_i и сглаженные скользящим средним значения (рис. 5.48). Если также установлен флажок опции Стандартные погрешности, то к значениям вычисленных средних будет добавлен столбец, в котором будут записаны стандартные погрешности, вычисляемые как сумма квадратов разностей между исходными и расчетными k значения y_i , деленная на число k. Формула Excel, по которой подсчитываются стандартные погрешности, показана на рис. 5.48.

24	A	B	C	D	E	F	G	н	1	J
1	t	Y		1	10 - 10 - 10	1.4		1.		
2	1	-1,2143		Скольтяни	не среднее					$2 \times$
3	2	0,59834		BACAPANE AN	HER				1	1
4	3	2,51071		Byttarea in	reppan:	\$8\$1:\$B	\$17	2	OK	
5	4	1,67194		Damas	and the second	- Decreated		and the second	Othera	12
6	5	4,8763		in Flatiers	переля стро				-	1
7	6	5,71518		Unrepeart:		4	-		Cricoska	
8	7	4,99587				C.S.				
9	8	4,78369		Паранитры	выяходи	10000		-		
10	9	2,01095		Dependence	терани	\$0\$1		7		
11	10	2,24485		Hampel puri	own mer-			31		
12	11	3,58566		House pub	CHARLES .					
13	12	1,00034				923				
14	13	4,47468		P Buelot 0	рафияса	P CTBU	atourne Oothe	UHOCTH		
15	14	2,34096		-						
16	15	3,67672								
17	16	6,0534								

Рис. 5.47. Исходные данные и диалоговое окно Скользящее среднее

5.18. Экспоненциальное сглаживание

Экспоненциальное сглаживание, как и скользящее среднее (см. раздел 5.17), используется для выравнивания (сглаживания) значений временных рядов. Если имеются дискретные наблюдения $y_1, y_2, ..., y_n$, то сглаженные значения вычисляются по формуле $\hat{y}_{t+1} = \alpha y_t + (1-\alpha) \hat{y}_t$, где \hat{y}_t — сглаженное значение для предыдущего t, α — постоянная сглаживания, также называемая фактором затухания (это число из интервала (0, 1)).

Рис. 5.48. Результаты вычислений

На рис. 5.49 показаны рабочий лист Excel с исходными данными (данные взяты из примера предыдущего раздела) и диалоговое окно Экспоненциальное сглаживание. В поле Входной интервал указывается адрес диапазона, содержащего значения y_i . Если этот диапазон включает заголовок, то надо установить флажок опции Метки. В поле Фактор затухания задается постоянная сглаживания; если она не задана, то по умолчанию используется значение 0,3. Установка флажков опций Вывод графика и Стандартные погрешности приводит к построению графика, на котором будут отображаться исходные и сглаженные значения (рис. 5.50), и к выводу дополнительного столбца со значениями погрешностей. Эти погрешности вычисляются как сумма квадратов разностей между тремя последовательными исходными и расчетными значениями, деленная на число 3. Формула Excel, по которой подсчитываются стандартные погрешности, показана на рис. 5.50.

5.19. Анализ Фурье

Данное средство выполняет дискретное преобразование Фурье. Это преобразование используется в анализе линейных систем и применяется к временным рядам для выявления периодических (спектральных) составляющих таких рядов.

Если имеются дискретные наблюдения $y_1, y_2, ..., y_n$, то прямое дискретное пре-

образование Фурье выполняется в соответствии с формулой $Y_k = \sum_{j=1}^n y_j e^{-i\frac{2\pi}{n}jk}$, k = 0,

1, ..., n-1. Результаты преобразования Y_k являются комплексными числами, модуль которых равен амплитуде k-й спектральной составляющей (k-й гармоники), а аргумент комплексного числа Y_k равен фазе этой гармоники. Аналогично опре-

деляется обратное дискретное преобразование Фурье ($y_j = \sum_{k=0}^{n-1} Y_k e^{i\frac{2\pi}{n}jk}$), которое пре-

образует спектральное представление временного ряда в действительное.

	A	B	C.	D	E	F.	6	H		J
1	t	Y	202	3						
2	1	-1,2143		STONE	Lange Lange of	T DO WHILE H				तज्ञ
3	2	0,59834		Bacase an			1933			
4	3	2,51071		Employed		10001-004	17	12	OK	
5	-4	1,67194		C State of the	report		-	- 21	(mma)	
6	5	4,8763		фактор зат	yx39468;	10,4			- China a	
7	6	5,71518		P Marries					©TD08H3	
8	7	4,99587		Параметры	85/0028				140.000	-
9	8	4,78369		BuildogHOR M	Incogene	1012		51		
10	9	2,01095		Lim A set	Subara Danta	-				
11	10	2,24485				- A				
12	11	3,58666		PRIMA DAGE	1426103673					
13	.12	1,00034		P Destor ()	sidowia -	P CTHU	фтные согрен	HEETA .		
14	13	4,47468								
15	14	2,34095								-
18	15	3,67672								
17	16	6,0534								
4.00										

Рис. 5.49. Исходные данные и диалоговое окно Экспоненциальное сглаживание

Рис. 5.50. Результаты вычислений

Средство Анализ Фурье выполняет как прямое так и обратное преобразования методом быстрого преобразования Фурье (БПФ). Применение метода БПФ диктует условие, чтобы количество исходных значений как для прямого, так и для обратного преобразований, было равно некоторой положительной степени числа 2. Максимальное число значений, которое может обработать средство Анализ Фурье, составляет 4096 (= 2^{12}). Для применения обратного преобразования Фурье исходные значения должны быть в формате комплексных чисел x + yi или x + yj (i и j — обозначение мнимой единицы). Если x является отрицательным числом, перед ним ставится апостроф (').

На рис. 5.51 показаны рабочий лист с исходными данными и диалоговое окно Анализ Фурье. Результат прямого преобразования Фурье показан на рис. 5.52. Первое значение (ячейка С2) равно сумме исходных данных.

Ser.	A	B	C	D	E	F	G	H	
1	t	Y				1			1.1
2	1	-1,2143							
3	2	0,59834							
4	3	2,51071	Анна	на Фурье		P1		1	×
5	- 4	1,67194	Bott		F (1			1	
6	- 5	4,8763	Ego	асстин Конц	a/1:	\$0\$1:\$8\$17	2	OK	
7	6	5,71518	12.4	the second second	and an end of the	20	10190	Othe-G	
8	7	4,99587		Season or Ladon	си страки			Index to set 1	
9	8	4,78369	The	SPRETTEN REAL	u.i			Cubana	
10	9	2,01095	12.1	LINE-OF HI	NODELEN:	\$0\$2	12		
11	10	2,24485	0	and and an	-	-			
12	11	3,58666	184	Turner pacitie	Net Derit				
13	12	1,00034	list	квая рабич	SA RANKS				
14	13	4,47468	E 1	9-692019					
15	14	2,34096	10.05	0.0201					
16	15	3,67672	_		1				_
17	16	6,0534							
400									

Рис. 5.51. Исходные данные и диалоговое окно Анализ Фурье

25 -	A	Ð	c
1	t	Y	Y комплексное
2	1	-1,2143	49,3262968701278
3	2	0,59834	-6,30122668866927-3,1954561628609
4	3	2,51071	-6,46705511956092+12,0347360926031i
5	4	1,67194	0,821035859520582+4,47215620909899i
6	5	4,8763	-4,6223323514806+2,61004208030321i
7	6	5,71518	-3,88437851609255+4,01286152893839
8	7	4,99587	-10,6416229921968+6,88428999446164
9	8	4,78369	-3,53648384452208-2,04828062788192i
10	9	2,01095	0,5088949466664288
11	10	2,24485	-3,53649384452207+2,04828062788193
12	11	3,58666	-10,6416229921968-6,88428999446163i
13	12	1,00034	-3,88437851609256-4,01286152893838
14	13	4,47468	-4,6223323514806-2,61004206030321i
15	14	2,34096	0,82103585952057-4,472156209099
16	15	3,67672	-6,46705511956095-12,0347360926031i
17	16	6,0534	-6,30122668866926+3,19545616286091i
18			

Рис. 5.52. Результат прямого преобразования Фурье

На рис. 5.53 показаны рабочий лист с исходными данными (результат прямого преобразования Фурье) для обратного преобразования и диалоговое окно Анализ Фурье, в котором установлен флажок опции Инверсия. Результат обратного преобразования Фурье показан на рис. 5.54; он совпадает с первоначальными данными из столбца В.

15-1	A	B		S	D	E	F	G
1	t	Y	Ү компл	тексное				1.00
2	.1	-1,2143	49,3262968701278					
3	2	0,59834	-6,30122668866927-	3,1954561628609				
4	3	2,51071	-6,46705511956092+	12,0347360926031				
5	4	1,67194	0,8210358595205824	4,47215620909699i				1
6	5	4,8783	-4,6223323514806*	Анализ Фурье				13 KS
7	6	5,71518	-3,88437851609255	Болдже данные				
8	7	4,99587	-10,6416229921968	Вуданой интервал:	\$0\$1:\$	C\$17	2 -	UN.
9	8	4,78369	-3,53648384452208	Ø Manay a removal more			111182	Onvere
10	9	2,01095	0,508894946864285	a. Thus a submost rebran				
11	10	2,24485	-3,53648384452207	Парачитры вывода				//papra
12	- 11	3,58666	-10,6416229921968	Выходной интервал:	\$0\$2		2	
13	12	1,00034	-3,88437851609256	С несьй поблика пист			_	
14	13	4,47488	-4,6223323514806-:	Cumpania	-			
15	14	2,34096	0,82103585952057-	• повая расочая била				
16	15	3,67672	-6,46705511956095	P (d-export				
17	16	6.0534	-6,30122668866926					
18			- 60 - 53					640

Рис. 5.53. Исходные данные для обратного преобразования Фурье и диалоговое окно Анализ Фурье

21	A	B	C	D
1	t	Y	Y комплексное	and the second second
2	1	-1,2143	49.3262968701278	-1,2143084680757
3	2	0,59834	-6,30122668866927-3,1954561628609	0,598338032876482
4	3	2,51071	-6,46705511956092+12,0347360926031i	2,51071073937697
5	4	1,67194	0,821035859520582+4,47215620909899	1,67193820535726
6	5	4,8763	-4,6223323514806+2,61004208030321i	4,8763014854766
7	6	5,71518	-3,88437851609255+4,01286152893839	5,71518492388823
ā	7	4,99587	-10,6416229921968+6,88428999446164	4,99587262986481
9	8	4,78369	-3,53648384452208-2,04828062788192	4,78369276345569
10	9	2,01095	0,508894946664288	2,01095482936513
11	10	2,24485	-3,53648384452207+2,048280627881934	2,24485009039457
12	11	3,58666	-10,6416229921968-6,88428999446163	3,58665980105682
13	12	1,00034	-3,88437851609256-4,01286152893838	1,00033833243323
14	13	4,47468	-4,6223323514806-2,61004206030321i	4,4746839316917
15	14	2,34096	0,82103585952057-4,472156209099	2,34095639355499
16	15	3,67672	-6,46705511956095-12,0347360926031	3,67672095963972
17	16	6,0534	-6,30122668866926+3,19545616286091	6,0534022197713
18				

Рис. 5.54. Результат обратного преобразования Фурье